Arrow Single LiDAR TOF Solution

Content

- Arrow Single LiDAR TOF Solution Introduction.
- LiDAR Use Marketing
- Arrow Single LiDAR ToF solution Block Diagram
- Arrow Single LiDAR TOF Solution - Transmit Path
-Arrow Single LiDAR TOF Solution - LD ROHM RLD90QZW3
- Arrow Single LiDAR TOF Solution - Test Result

Arrow Single LiDAR TOF Solution Introduction

- LiDAR (Light Detection and Ranging) is using ToF (Time of Flight) as a core technology for measuring time spent from sensor to object and reflect to sensor and thus for distance estimation between sensor and object.
- Arrow LiDAR ToF solution are composed of 75W Laser diode (LD) and highly sensitive Photomultiplier together with high bandwidth, low delay optical front-end system to provide accurate ToF timing measurement through TDC (Time-to-Digital Converter) and then convert to the distance information.
- A short pulse on Laser diode (<15nsec) can give a good Laser optical power output with smaller input power thru Fast eGaN FET transistor and Gate driver control.
- Operation range: 50 cm - 50m (Indoor environment)
- 3 operated mode is supported, Average, Continuous and one-shot mode.

Basic principle for Pulsed LiDAR ToF system

LiDAR Use Marketing

- Distance and range measurement
- Speed measurement
- Car parking assistant system
- Machine Vision
- Security system
- Create 3D map

Arrow Single LiDAR ToF solution Block Diagram

Arrow Single LiDAR TOF Solution - Transmit Path

- Adjustable Vout from 25V - 60V
for higher LD power
- LD can give higher optical power with the shorter pulse width
- 15nsec pulse width is used in Arrow demo

- MCU generate a triggering pulse to Gate driver
- Gate driver generate a short trigger pulse in 15ns or less
- eGaN FET provides fast switching behavior for LD
- PCB layout is also important to achieve fast switching, especially for the grounding for difference power supply system

Arrow Single LiDAR TOF Solution- LD ROHM RLD90QZW3

Key features of ROHM RLD90QZW3
Narrow emitting width \rightarrow Longer distance and higher accuracy

High PCE (Power Conversion Efficiency) \rightarrow
Higher reliability and energy saving

Smaller temp variation in waveform \rightarrow Energy saving and longer distance

Support narrowing trigger pulse width \rightarrow
Higher optical power, longer distance, power saving

Emitting Area	Maximum Ratings	Absolute Maximum Ratings (plans)			
		PW:50ns	PW:50ns	PW:15ns	PW:5ns
	Vf Improved Version	$225 \mu \mathrm{~m}$	75 W	90 W	130 W

Test Result

Distance Test Result

- check on the measurement distance vs the actual distance in indoor environment condition

NKOW Arrow confidential Information - strictly for internal use only

Thank You

