

WantEdge 采用低功耗助手(LPA)技术的英 飞凌CYW43012 Wi-Fi蓝牙组合 芯片和 PSoC 62 MCU 打造超低 功耗的IoT系统设计

主讲人:陈顺祥(Harris Chan)

MOUSER Infineon

rest ricte

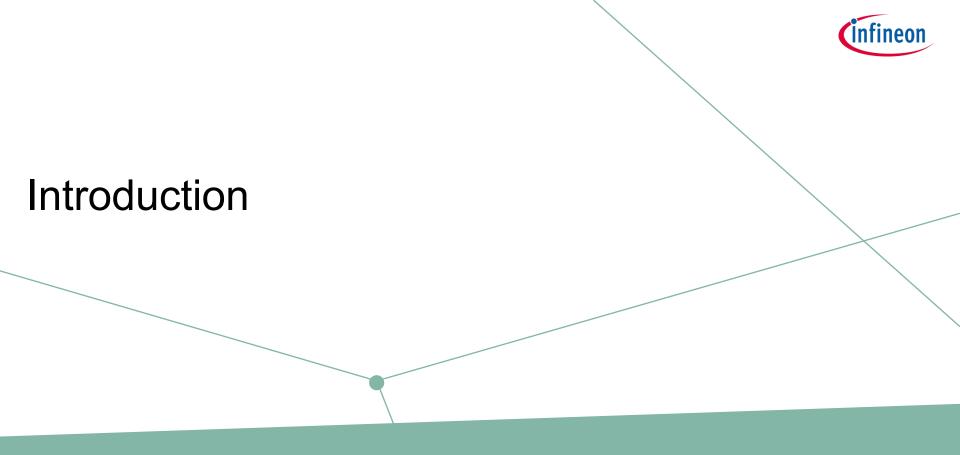
Ultra Low Power IoT System Design with Infineon CYW43012 Wi-Fi BT Combo and PSoC 62 MCU using Low Power Assistant Technique

Presented by: Harris Chan

rest ricte

Introduction – Low Power in IoT designs

CYW43012 Radio and PSoC 6 MCU Low Power Features Overview


Power Optimization Techniques – Wi-Fi and MCU

Low Power Assistant (LPA) library – Overview

Demo – Optimizing MQTT Cloud example for Power

IoT-AdvantEdge[™] Core Strengths

CONNECT

Unfailing connectivity with best-inclass range and interoperability; delivering excellent consumer experience

COMPUTE

IoT-optimized MCU solutions that deliver security, power-efficiency, and data intelligence at the edge, while enabling engaging humanmachine interfaces

CREATE

Flexible, open-architecture platform enabling designers to craft unique, future-proof IoT systems from a comprehensive menu of preconfigured building blocks

Complete view of IoT design complexities; Unique ability to offer comprehensive solutions

IoT-AdvantEdge[™] Solves Critical IoT Design Problems

Connectivity

Getting products to work seamlessly in a field of multiple wireless technologies; dual-band Wi-Fi and BT

Ease-of-Use

Making technology plug-and-play Behind-the-scenes software updates Voice commands and other simple interfaces

Security

Compliance with emerging privacy and security requirements

Integration

Making disparate technologies work together seamlessly

HMI

Aesthetically attractive industrial design enabled by state-of-the-art HMI

Secure, scalable device management with easy on-boarding supporting major platforms or in-house servers

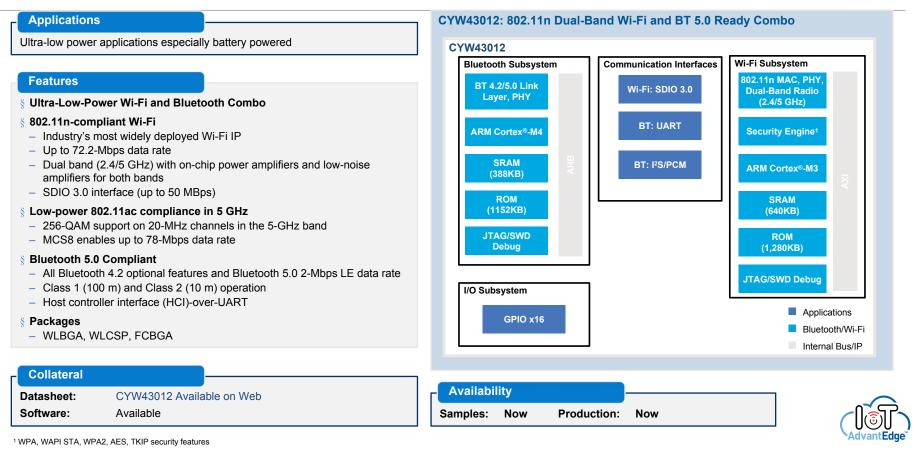
Low Power

Operating on low power for long periods Heat dissipation Addressing environmental issues

Enhanced profitability through reduced support costs

Secure lifecycle management enables feature upgrade/maintenance

Proven, secure, connected, flexible, and robust: Built for the future


CYW43012 Wi-Fi/Bluetooth Radio and PSoC 6 MCUs

CYW43012

§

Ultra-Lower Power 11n/11ac-Friendly™ Dual-Band Wi-Fi and Bluetooth 5.0 for IoT

CYW43012 Wi-Fi/BT Radio ULP 28nm Design with Enhanced Deep Sleep

RECEIVE 50% ê power consumption than existing 40nm 802.11n products

70% ê power consumption than existing 40nm 802.11ac products

LOW POWER

80% ê Sleep power consumption than existing 40nm 802.11n products

50% to **60%** $\hat{\rm e}$ Idle & Ready Mode power consumption than existing 40nm 802.11n products

CYW43012 is a game-changer!

~50% power savings in 2.4GHz DTIM 1 & DTIM 3 ~46% power savings for 2.4 GHz RX (MCS7) ~28% power savings for 2.4 GHz TX (MCS7)

		CYW4343W				CYW4	3012
		VBAT (3.6 V) mA	VDDIO (1.8 V) μΑ	Total Power Consumption from Battery (mW)**	VBAT (3.6 V) mA	VDDIO (1.8 V) μΑ	Total Power Consumption from Battery (mW)**
	Radio Off	0.0035	0.08	0.013	0.0012	0.3	0.005
SLEEP, IEEE Power Save, Inter Beacon		0.0058	80	0.181	0.003	88.0	0.187
2.4GHz DTIM 1		1.05	74	3.928	0.447	93.0	1.795
2.4GHz DTIM 3		0.35	86	1.432	0.156	88.0	0.738
WLAN	Rx MCS7 HT20	41	12	140.4	21	375	76.350
2.4G	Tx MCS7 HT20 18dBM	260 (15 dBm)	15	936.0	187	1400	676.000
WLAN 5G	Rx MCS7 HT20	—	_	—	21.5	770	78.940
	Tx MCS7 HT20 18dBM	—	—	—	265	1600	957.200

**Assuming 3.6V VBAT direct from battery and 1.8V VIO from a 90% efficiency external buck connected to 3.6V battery

PSoC 6: Purpose-Built for the IoT

Emerging IoT devices require increased processing and security without a power or cost penalty

Infineon's <u>PSoC</u> 6 portfolio bridges the gap between application processors and standard microcontrollers

- > 150-MHz and 100-MHz dual-core Arm[®] Cortex[®]-M4 and Arm Cortex[®]-M0+ ultra-low-power 40-nm architecture
- Industry-leading ultra-low-power design that consumes as little as 22-µA/MHz in active power mode¹
- > Best-in-class flexibility with wired and wireless connectivity options, software defined peripherals and industry-leading CapSense®
- > Integrated, hardware-based Trusted Execution Environment (TEE) with secure data storage

PSoC 6: Ultra-Low-Power IoT Solution

Power Mode	Current Consumption	Code Execution	Digital Peripherals Available	Analog Peripherals Available	Clock Sources Available	Wake-Up Sources	Wake-Up Time
Active (M4)	5.82-mA @ 150-MHz (LP ¹) 1.43-mA @ 50-MHz (ULP ²)	Yes	All	All	All	-	-
Active (M0+)	3.43-mA @ 100-MHz (LP) 0.75-mA @ 25-MHz (ULP)	Yes	All	All	All	-	-
Low-Power Active (M4)	380-µA @ 8-MHz	Yes	All	All	8-MHz IMO ³	-	-
Deep-Sleep	7.0-µA	No	WDT⁴, SCB⁵	Comparator, POR ⁶ , BOD ⁷	32-kHz ILO ⁸	Comparator, GPIO, WDT, DS-SCB	10-µs, 100-µs ⁹
Hibernate	300-nA	No	No	Comparator, POR	No	Comparator, GPIO, RTC	500-µs

The PSoC 6 MCU Architecture¹⁰ reduces energy consumption without sacrificing performance with:

- Dynamic voltage and frequency scaling enabling both performance- and power-critical processing
- A dual-core architecture, where the Cortex®-M0+ can be used as an offload engine for power efficiency, allowing the main Cortex®-M4 core to sleep
- An ultra-low-power system, where the Cortex[®]-M4 consumes 22-µA/MHz and the Cortex[®]-M0+ consumes 15-µA/MHz

PSoC 6 sets a new, industry-leading low-power benchmark for today's IoT devices

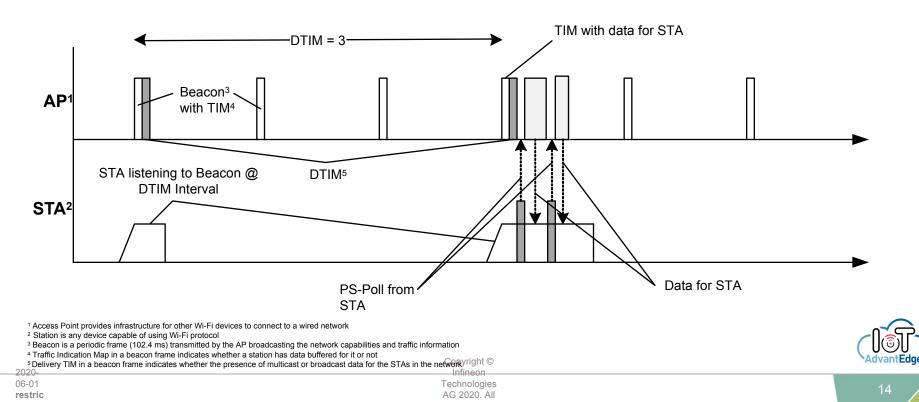
¹ Low-power active mode (1.1-V operation) ² Ultra-low-power active mode (0.9-V operation) ³ Internal main oscillator

⁴ Watchdog timer serial communications block

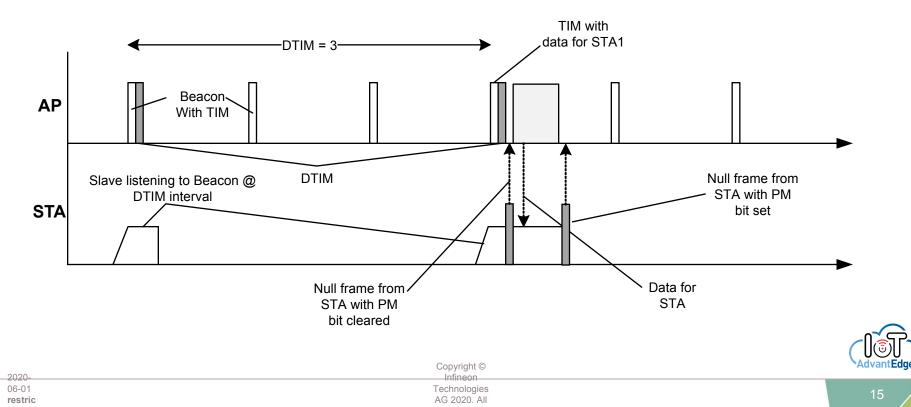
5 Serial communications block 6 Power-on-reset

7 Brownout detect 8 Internal low-speed oscillator 9 Low-power active and active modes, respectively

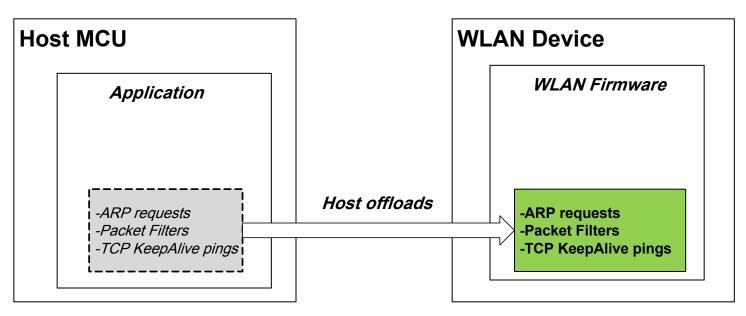
¹⁰ Built on a 40-nm ultra-low-power process. providing the lowest power, most flexibility, and most secure architecture for the IoT

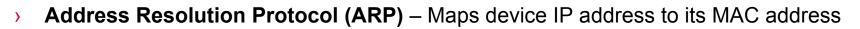


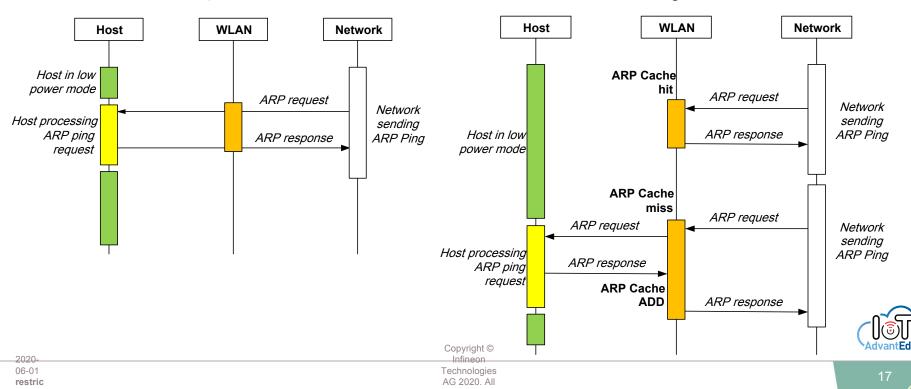
Power Optimization Techniques


Wi-Fi: IEEE 802.11 Power Save

> Power Save with Poll (PS-Poll)


> Power Save without Poll

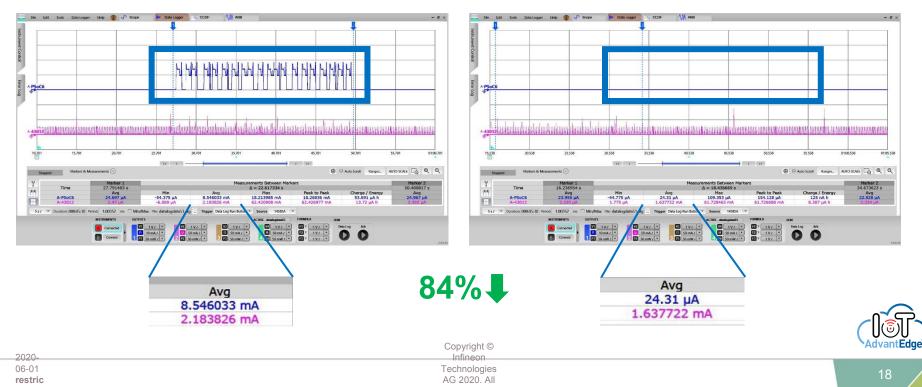



> Functionalities executed by WLAN device (CYW43012) on behalf of host

ü More time for Host in low-power mode

ARP Ping without offload

ARP Ping with offload



Wi-Fi: ARP offload

> ARP Offload

ARP Ping without offload

ARP Ping with offload

Wi-Fi: Packet Filter Offload

2020-

06-01

restric

Offload with discard filter for Ping packets

WLAN Network Host **Application Layer** Network Port Number HTTP DHCP Ping packet sending a SSH Filter TFTP discarded Host in low Ping FTP power request mode Transport Layer **IP** Type ARP ping Filter TCP UDP **ICMP** forwarded to host Network **Network Layer** Host in Active mode sending a processing ARP ARP Ping ping request Ether Type ARP ping Filter ARP IP response from host Copyright © Infineon Technologies AG 2020, All

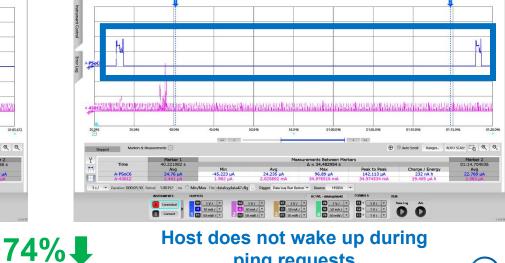
Packet Filter – Block unwanted network traffic >

Wi-Fi: Packet Filter offload

Packet Filter – with minimal filters enabled (DHCP, ARP, 802.11x, DNS)

Help -PSoC6 1.00.67 01:05:672 Auto Scroll Ranges... AUTO SCALE L. Q. Q. A = 27 193385 e 58 34666 # Charge / Energy Peak to Pea Avg 25.825 µA A-PSoC 15.963 μl 57.661 µA Duration 000.05.20 Min/Max File: dataloodata41.dlg
 1V/*
 1V/*

 100mA/*
 20

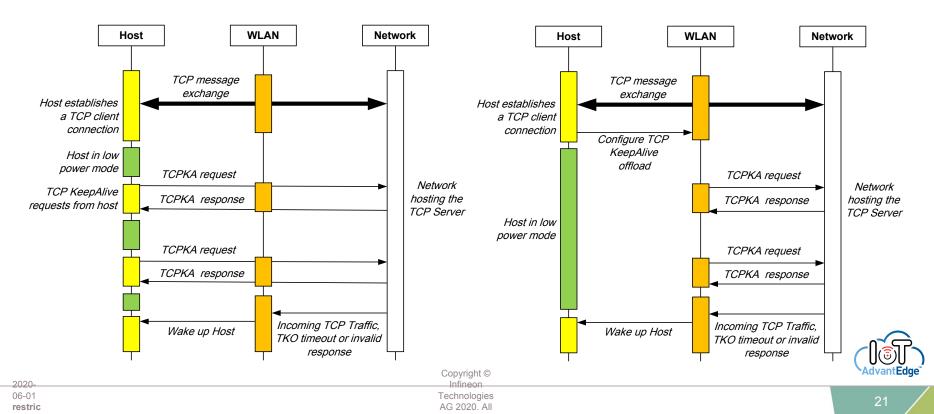

 100mA/*
 20
1 10 mA / • 1V/ * 2 50 mA/ * 1V/ 3 50 mA / *

Host wakes up to service the

request

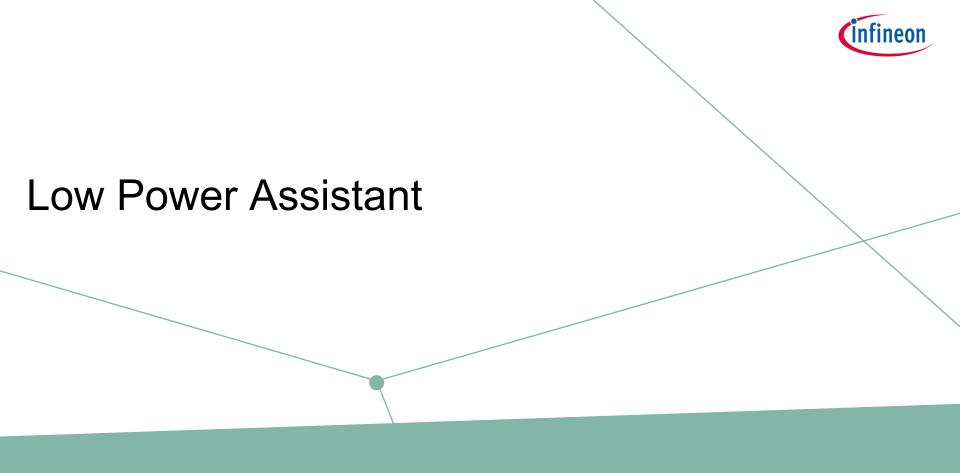
ARP Ping from Network

Ping (ICMP) from Network

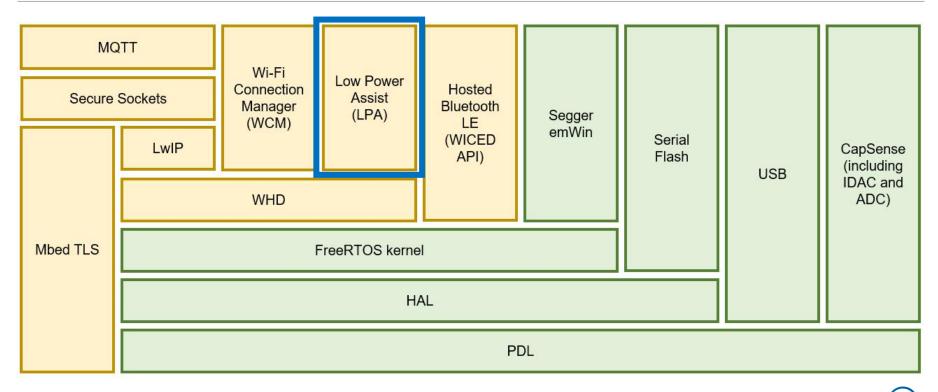

Host does not wake up during ping requests

	Copyright ©	
2020-	Infineon	
06-01 restric	Technologies	
restric	AG 2020. All	

> **TCP Keep Alive** – Maintain active TCP connection without interrupting the host



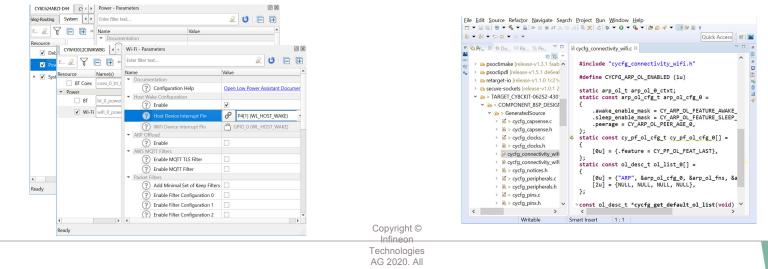
LPA Feature	Description ¹	Power consumption		
	Description	Without LPA	With LPA	
Wi-Fi ARP offload	Enable host wake, Enable ARP offload and Suspend network stack	10.6 mA	1.6 mA (84%)	
Wi-Fi Packet Filter Offload	Enable host wake and minimal set of filters - ARP, DNS, DHCP, 802.11x security - to establish a Wi-Fi connection	7.7 mA	2.0 mA (74%)	
Wi-Fi TCP Keep Alive All use mbed-os-example-wifi code example for adding to Offload	Enable host wake and TCP KeepAlive modified and the interval of 3 seconds AWS INT example - 80%	19.5 mA	3.3 mA (83%)	
	AWS IoT example – 80%			



	Copyright ©	*Advant Edg e
2020	Infineon	
06-01	Technologies	22
restric	AG 2020. All	22

ModusToolbox[®] AnyCloud Stack

	Wireless libs PSoC 6 libs	
2020-	Copyright ©	AdvantEdge*
06-01 restric	Technologies AG 2020. All	24


LPA: Overview

2020-

06-01

restric

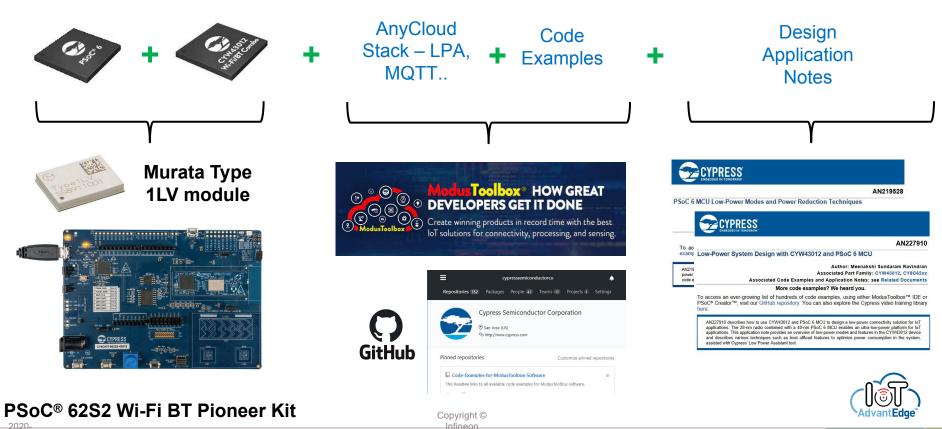
- Self-aware firmware that detects configurations automatically and enables appropriate lowpower features without any additional API calls from the user
- > Supports multiple platforms such as Mbed OS and FreeRTOS (AnyCloud)
- GUI-based configuration for ease of use
- Supports low-power configuration for PSoC 6 MCU, Wi-Fi and BT

Using ModusToolbox Configurator

Using Code

LPA: Features

- > Supported features -
 - MCU Low Power
 - Wi-Fi and Bluetooth Low Power
 - Wi-Fi Address Resolution Protocol (ARP) Offload
 - Wi-Fi Packet Filter Offload
 - Wi-Fi TCP Keepalive Offload
- AnyCloud 1.0 support
 - LPA v2.0.0 and ModusToolbox 2.1
- Mbed OS support
 - LPA v1.0.0 and Mbed OS 5.14.2 or later
- > Provides Quick Start Guide for features supported



LPA Walkthrough Demo

Getting Started

Technologies

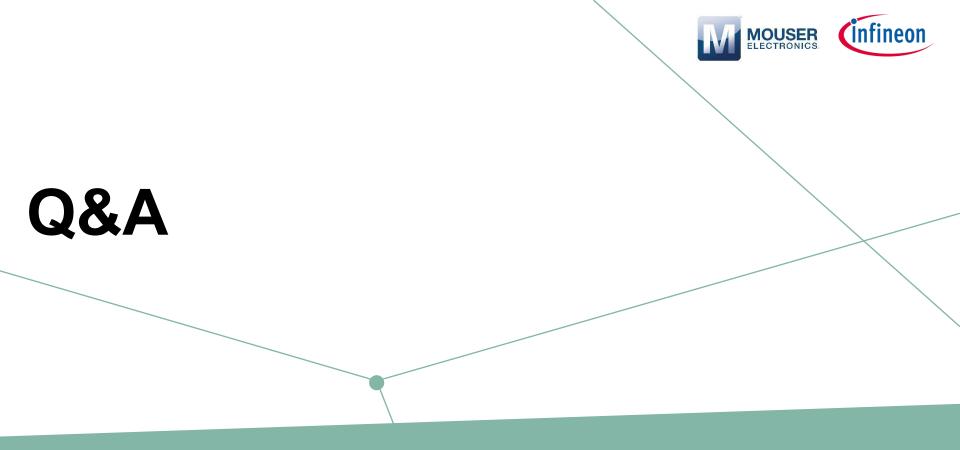
AG 2020. All

06-01

restric

Resources

Action	Link
Order a Kit From Mouser	<u>PSoC® 62S2 Wi-Fi BT Pioneer Kit</u> <u>Murata Type 1LV module</u>
Download the App Note	Low Power System Design with CYW43012 and PSoC 6 MCU
Learn About the Products	PSoC 6 MCU (silicon available @ Mouser) CYW43012 Wi-Fi/Bluetooth Radio (module available @ Mouser) IoT-AdvantEdge: Power Efficient Solutions Page
Get the Software	<u>ModusToolbox 2.1 Software Environment</u> <u>Low Power Assistant Library</u>
Download Code Examples	<u>AnyCloud LPA examples</u> <u>Mbed OS LPA examples</u>
Join the Infineon Community	Community home page
01 tric	Technologies AG 2020. All


扫码关注赛普拉斯官方微信,获取更多信息及帮助

2020-
04-17
restric

Copyright © Infineon Technologies

AG 2020. All

Copyright © Infineon Technologies AG 2020. All

Part of your life. Part of tomorrow.