

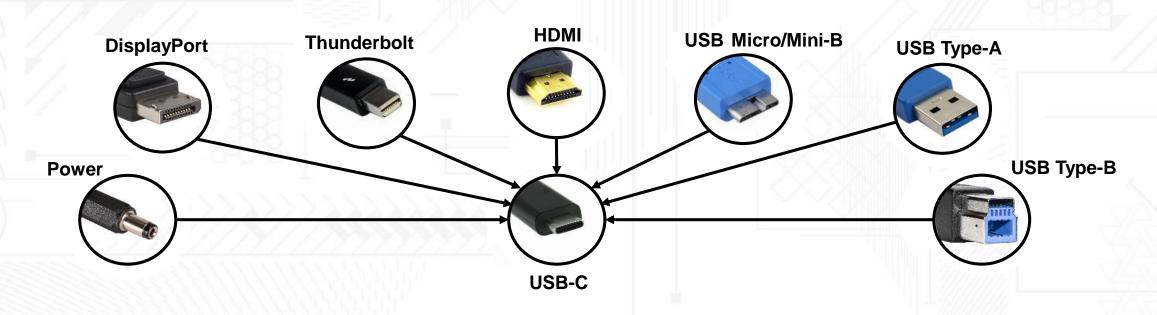
# **EZ-PD™** Barrel Connector Replacement (BCR) Solution

**Power Your Products With Any USB-C Power Adapter** 








### **USB-C: The One Connector That Rules Them All**

#### **USB-C** is the new **USB** standard that facilitates:

Slim industrial design with a 2.4-mm plug height

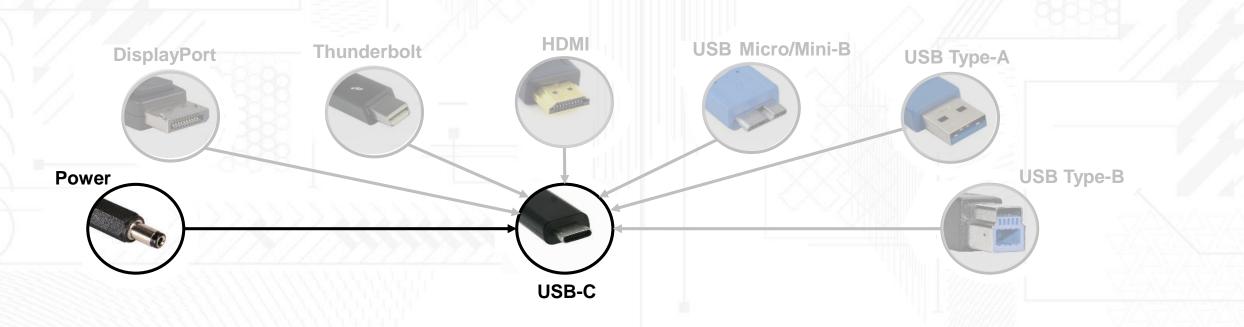
Reversible plug orientation and cable direction

Transport of USB data along with DisplayPort, HDMI, or Thunderbolt signals on the same connector Easy implementation of low-cost USB Power Delivery up to 100 Watts





### **USB-C: The One Connector That Rules Them All**


**USB-C** is the new **USB** standard that facilitates:

Slim industrial design with a 2.4-mm plug height

Reversible plug orientation and cable direction

Transport of USB data along with DisplayPort, HDMI, or Thunderbolt signals on the same connector

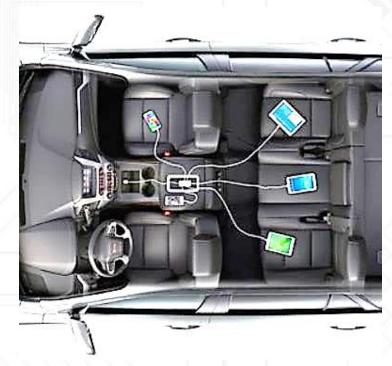
Easy implementation of low-cost USB Power Delivery up to 100 Watts





### **USB-C:** Past, Present and Future

### 2015 to Today




### \_\_\_\_\_\_

Data, Video, Power Over USB-C

USB-C enables one-cable docking to ultra-sleek, ultra-mobile notebook and smart phones

#### **Next 5 Years**



### **USB-C In Every Car**

Abundance of USB-C ports in a car to fast-charge everyone's smart phone, tablet or notebook PC

#### **Next 10 Years**



#### **USB-C Powers Everything**

USB-C chargers and power outlets replace all conventional power adapters



### Do You Have A Box Like This In Your House?





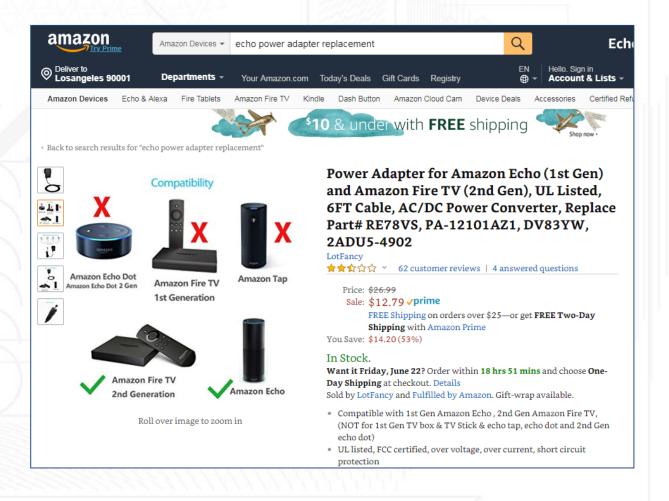
### **USB-C: The Universal Power Connector**

### **Conventional Power Adapters**

- X Incompatible Connectors
- X Fixed Voltage & Current
- X Not made for sharing or re-use



### **USB-C Power Adapters**


- Universal Connector
- ✓ Negotiable Voltage & Current up to 100W
- ✓ Standardized for sharing and re-use





## **USB-C Standardizes Power Adapters to a Common Connector**

#### **Eliminate Confusion**



#### **Carry Only One Charger With You**







### e-Waste On The Rise

#### **More Power Adapters Than Ever**

1,000,000 tons of power adapters are shipped annually<sup>1</sup>

The shipment is rising as the average life cycle of consumer electronics is shrinking

#### **Efforts Curbing e-Waste**

Digital Europe & USB-IF memorandum on USB-C charger for mobile phones

#### **USB-C Reduces e-Waste**

All electronic devices consuming less than 100W should be powered by a common USB-C power adapter





### **Design Problems Engineers Face**

- Converting a barrel connector to USB-C requires in-depth USB-C knowledge
  - Requires expert knowledge of the USB PD specification and hands-on experience in USB PD system design
  - Must meet USB-IF certification requirements to ensure spec compliance and interoperability
- Designing a product that can be powered by any USB-C power adapter is difficult
  - Different products require different voltage levels and current ratings in power supplies
  - Requires an MCU and firmware development to implement a full USB PD stack
- USB-C solutions are costly in comparison to legacy barrel connectors
  - The cost of a USB-C controller plus connector is greater than a legacy barrel connector
  - Additional power-related protection circuitry and components further increase overall BOM cost

### Solution: Cypress' Barrel Connector Replacement (BCR) Controller

- USB-IF certified with market-proven USB PD stack, ensuring spec compliance and interoperability
- Supports all USB PD profiles commonly used in USB-C power adapters and requires no firmware development
- A highly-integrated solution that minimizes incremental BOM costs



Design Problems

### **EZ-PD BCR**

#### **USB Type-C Power-Sink Port Controller**

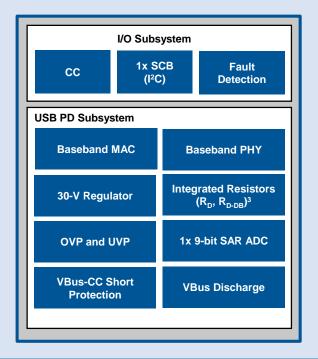
#### **Applications**

Portable electronics – cameras, camcorders, smart speakers, toys, gaming, shavers, powered tools, wireless charging pads, and any battery-powered device

Industrial – LED lighting, scanner, printer, drones, and IoT

Any electronics device consuming less than 100W

#### **Features**


- Integrated Type-C and Power Delivery (PD) Transceiver
- Integrated high-voltage 30-V-tolerant LDO to power the BCR controller
- One serial communication blocks (SCB) for slave I<sup>2</sup>C
- Integrated Analog
- V<sub>BUS</sub> overvoltage (OVP) and undervoltage (UVP) protection
- Fault detection for PDO mismatch
- Slew rate-controlled PMOS FET gate driver
- Minimum 25-V-tolerant CC pins and FET control pins
- Low-Power Operation
- High-voltage (5-30 V, 30 V maximum) V<sub>BUS</sub> voltage inputs
- Sleep: ~3.5 mA; Deep Sleep: 50 μA with wake-on-I<sup>2</sup>C or CC
- System-Level ESD on CC, and V<sub>BUS</sub>
  - ±8-kV contact, ±15-kV Air Gap IEC61000-4-2 Level 4C
- Package
- 24-QFN (16 mm<sup>2</sup>), supporting extended Industrial temp (-40 °C to 105 °C)

#### Collateral

Datasheet: CY3177 Datasheet **Evaluation Kit: CY4533 Kit** 

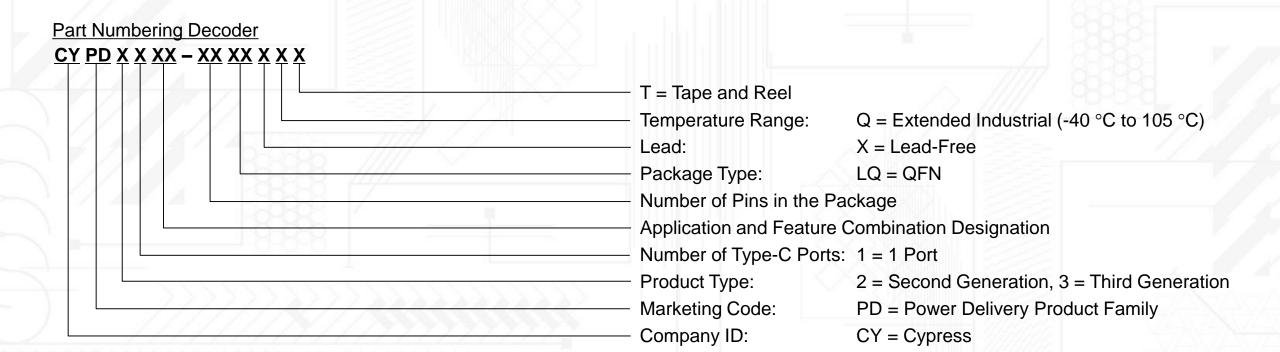
Product Brochure: EZ-PD Barrel Connector Replacement Product Overview

#### **EZ-PD BCR: USB Type-C Power-Sink Port Controller**



#### **Availability**

**Production: Now** 




<sup>&</sup>lt;sup>1</sup> Analog feedback voltage control circuit to control V<sub>RUS</sub>

 $<sup>^2</sup>$  Circuit to measure the current flowing on the V $_{\rm BUS}$   $^3$  Termination resistors: R $_{\rm D}$  as a UFP, R $_{\rm D-DB}$  as a UFP supporting dead battery

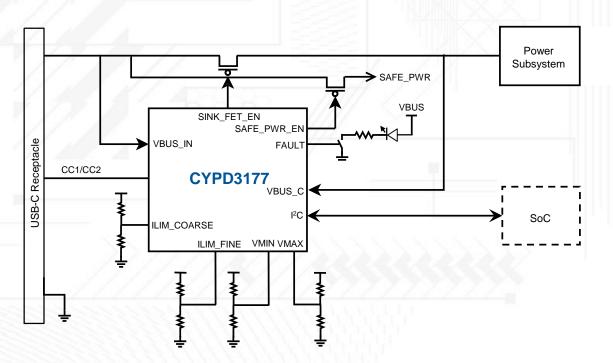
### **EZ-PD BCR Product Selector Guide**

**VBUS-CC Part Number Application Termination Resistor Short Protection 30V-Tolerant LDO** OVC Role **Package UFP** CYPD3177-24LQXQ **BCR**  $R_d^1, R_{d-db}^2$ Yes Yes Yes 24-QFN





<sup>&</sup>lt;sup>1</sup> Termination resistor denoting an upstream facing port (UFP)


<sup>&</sup>lt;sup>2</sup> Termination resistor denoting a UFP supporting Dead Battery

### **EZ-PD BCR Solution Converts Your Product to USB-C**

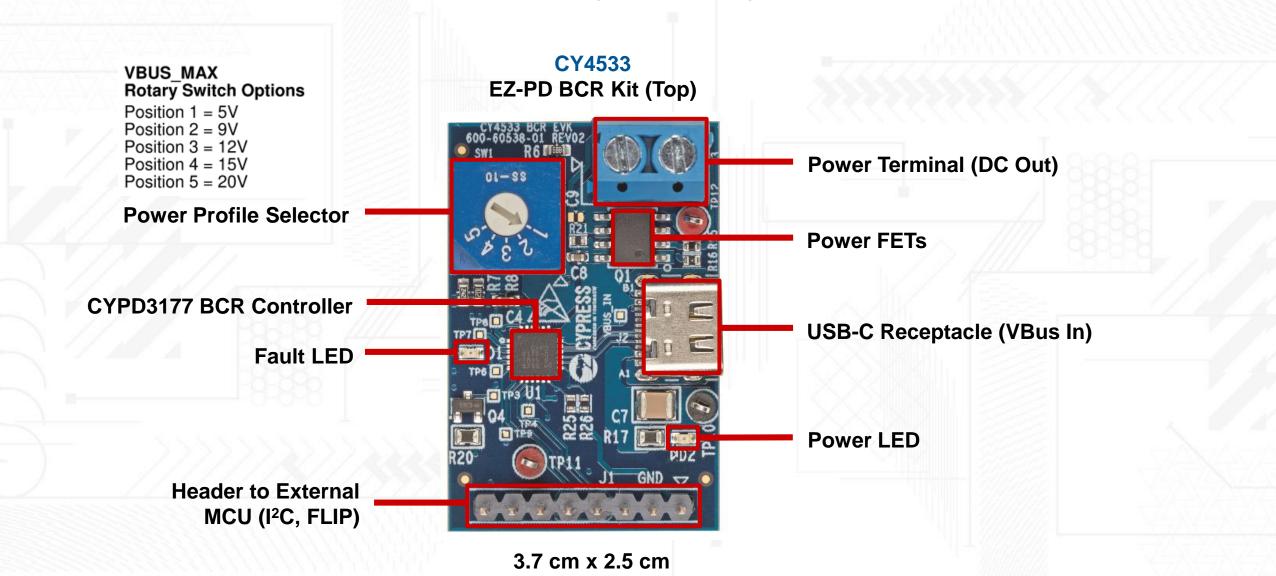
#### CYPD3177 Barrel Connector Replacement (BCR) Controller is a compelling solution that

Requires only 8 external passive components to implement a USB-C power sink
Supports 5 USB PD PDOs (5V/9V/12V/15V/20V, up to 5A) commonly found in USB-C power adapters
Is easily configurable using external resistors and requires no firmware development
Integrates all protection circuitry (VBus-to-CC short, undervoltage/overvoltage, ESD) on chip



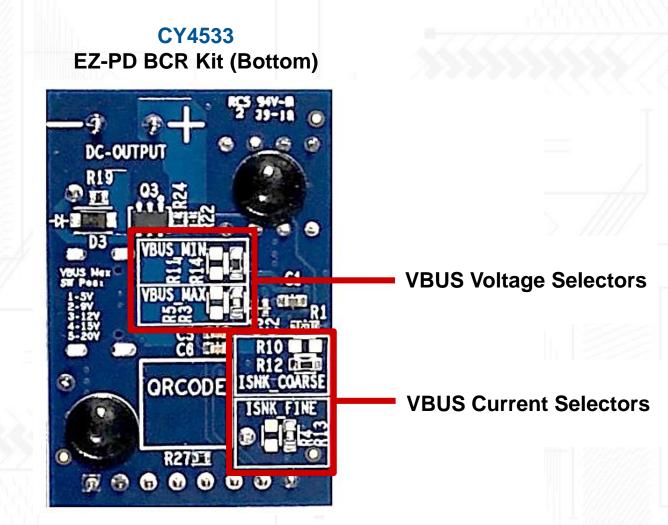


Use VMIN and VMAX to set the VBus voltage range from a USB-C power adapter


| VBus      | 5V   | 9V    | 12V   | 15V   | 20V  |
|-----------|------|-------|-------|-------|------|
| Pull-up   | None | 5.1ΚΩ | 5.1ΚΩ | 5.1ΚΩ | 0ΚΩ  |
| Pull-down | 0ΚΩ  | 1ΚΩ   | 2.4ΚΩ | 5.1ΚΩ | None |

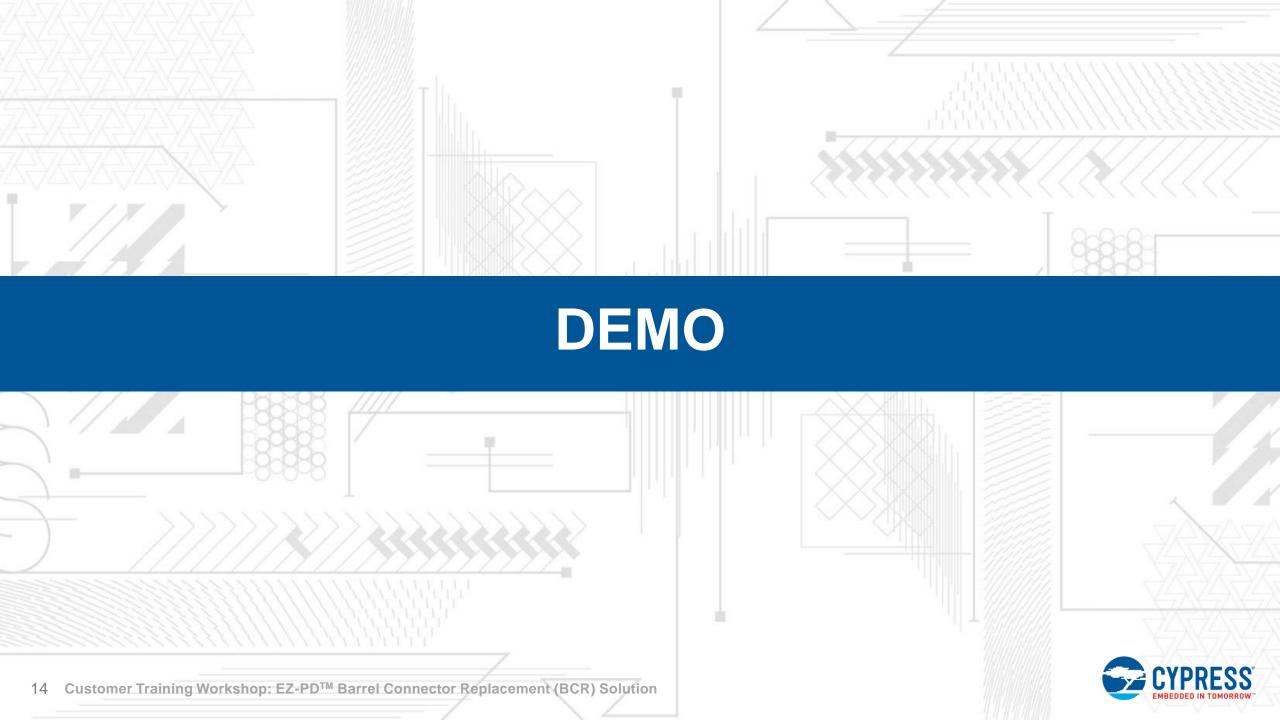
Use ILIM\_COARSE and ILIM\_FINE to set maximum current from a USB-C power adapter Maximum current = ILIM\_COARSE + ILIM\_FINE

| ILIM_COARSE | 0A   | 1A    | 2A    | 3A    | 4A    | 5A                                                                                     |
|-------------|------|-------|-------|-------|-------|----------------------------------------------------------------------------------------|
| Pull-up     | None | 5.1ΚΩ | 5.1ΚΩ | 5.1ΚΩ | 5.1ΚΩ | 0ΚΩ                                                                                    |
| Pull-down   | 0ΚΩ  | 1ΚΩ   | 2.4ΚΩ | 5.1ΚΩ | 10ΚΩ  | None                                                                                   |
| ILIM_FINE   | 0mA  | 250mA | 500mA | 750mA | 900mA | V4                                                                                     |
| Pull-up     | None | 5.1ΚΩ | 5.1ΚΩ | 5.1ΚΩ | 0ΚΩ   | $\rightarrow \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |
| Pull-down   | 0ΚΩ  | 1ΚΩ   | 2.4ΚΩ | 5.1ΚΩ | None  |                                                                                        |



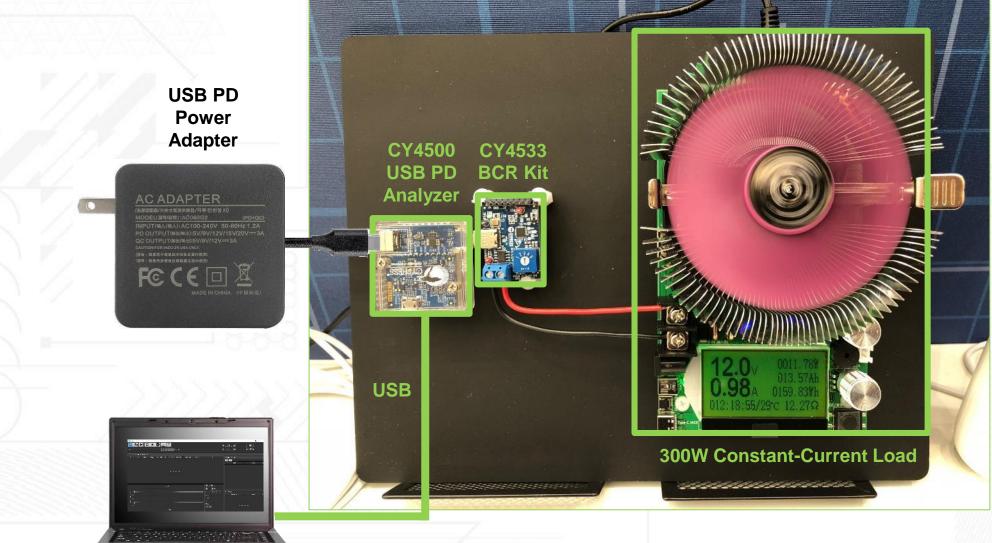

# Use EZ-PD BCR Kit to Quickly Prototype a USB-C Power Sink






# Use EZ-PD BCR Kit to Quickly Prototype a USB-C Power Sink



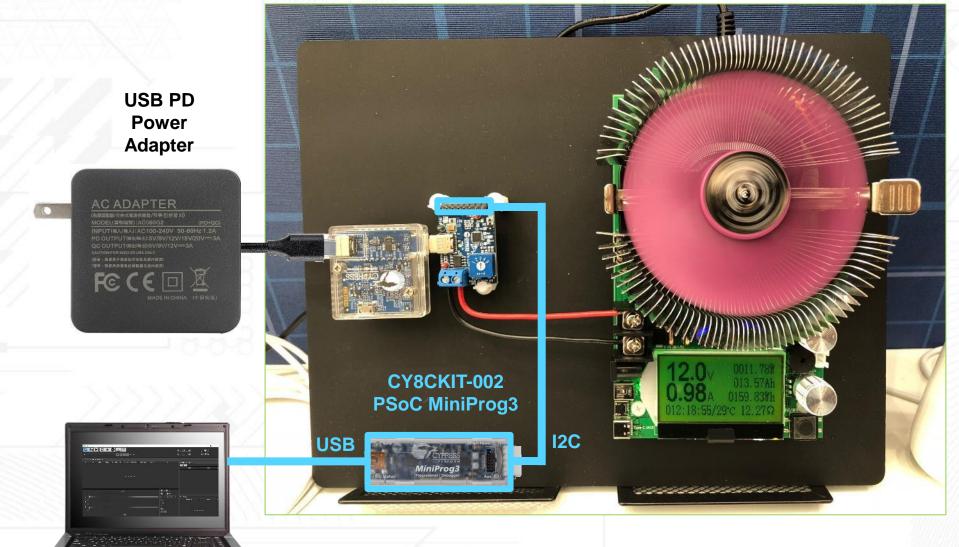







### Use EZ-PD BCR Kit to Implement a USB-C Power Sink

1. Using on-board rotary dial




**Barrel Connector Replacement (BCR) Solution** 

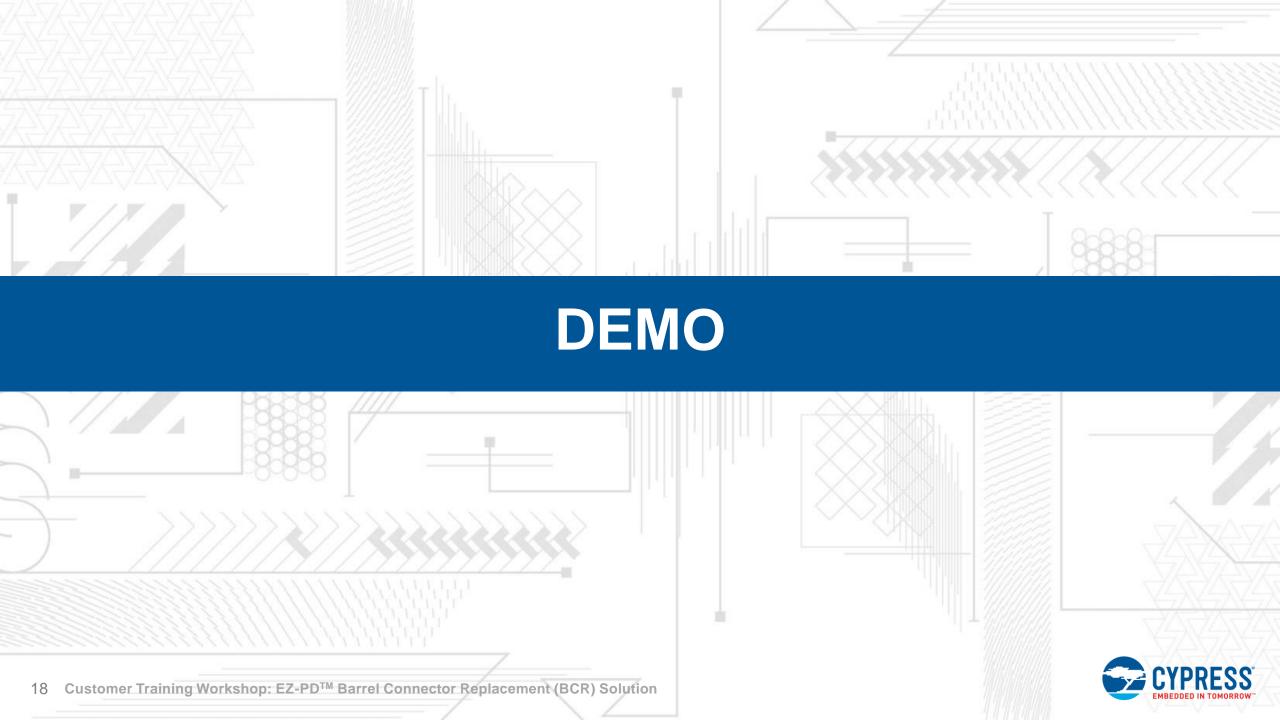


# Use EZ-PD BCR Kit to Implement a USB-C Power Sink

2. Using external MCU via I<sup>2</sup>C




Barrel Connector Replacement (BCR) Solution




# 3 Easy Steps to Jumpstart Your USB-C Conversion

- (1) Select a commercially available USB-C power adapter that supports the desired USB PD power profile
- (2) Set up the desired USB PD power profile with EZ-PD BCR Kit and quickly prototype by converting the USB-C power input to a barrel connector output to the product. No firmware development required
- (3) Embed CYPD3177 BCR Controller into your product and replace the barrel receptacle with a USB-C receptacle. Your product can now be powered by any USB-C power adapter supporting the required power profile. The USB-C power adapter can be shipped in-box with the product, sold separately or be left to the users to use their own







### The World Has Started Moving to a USB-C Power Source



**250+ Personal Computers** 





700+ 3<sup>rd</sup>-party Chargers, Power Banks



**Nintendo** 



**GoPro** 



Cisco

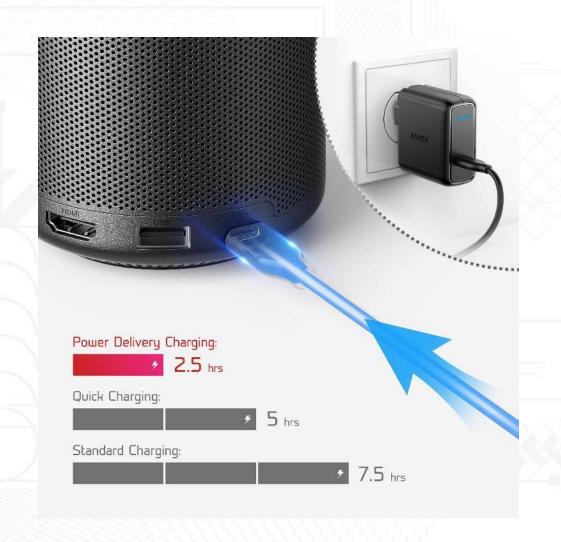


Google



**Anker** 




LG

... And Many More to Come

Many Products Are Already Powered By USB-C



# **Top OEMs Are Actively Promoting USB-C Benefits**







# Convert Your Barrel-Powered Design To USB-C Now



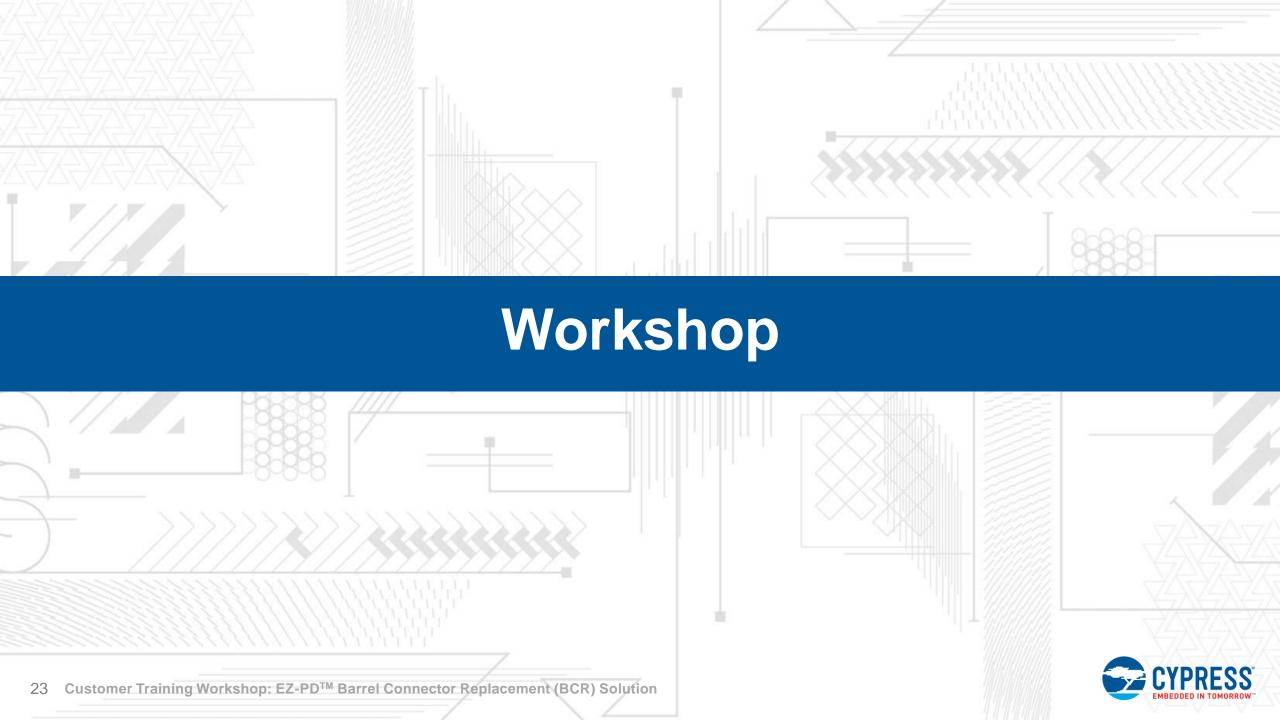




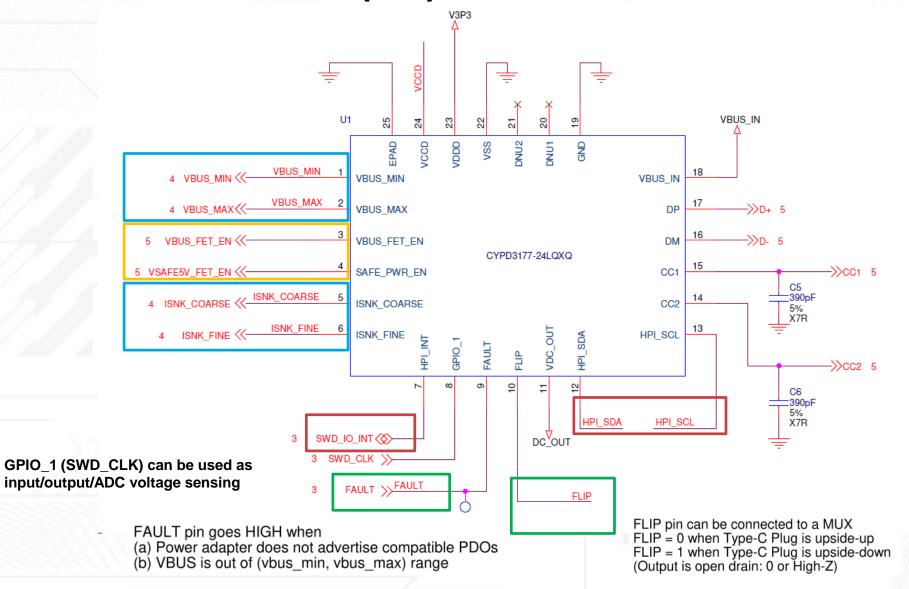
## **Get Started By Ordering Your EZ-PD Kits**

CY4533 - EZ-PD BCR Kit



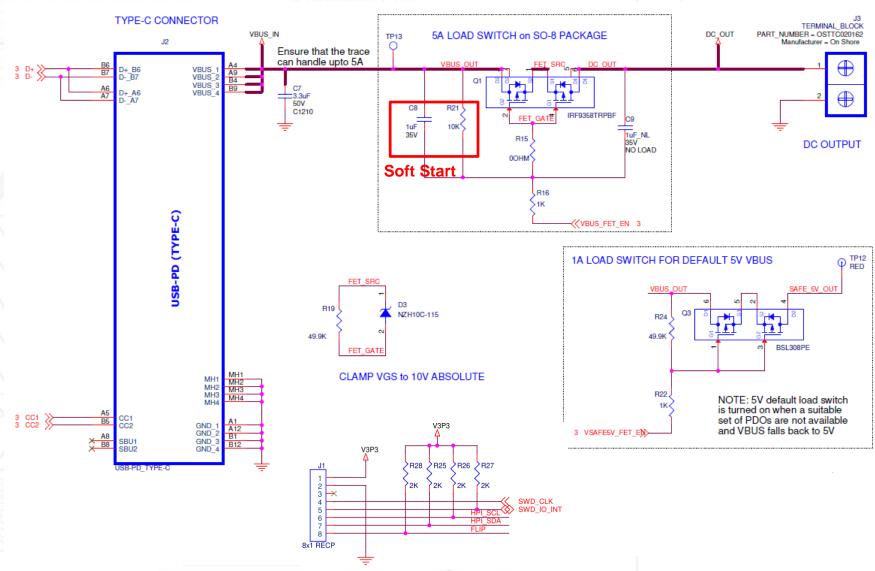

Cypress.com/cy4533

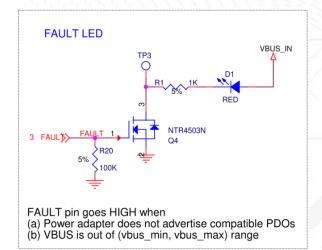
CY4500 - EZ-PD Protocol Analyzer

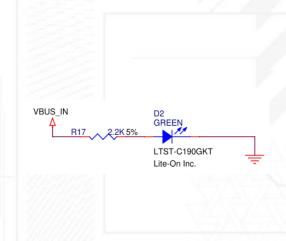



Cypress.com/cy4500





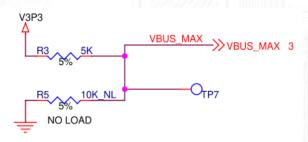


## **Schematic Overview (1/3)**



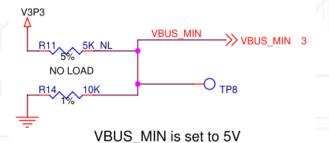



# Schematic Overview (2/3)





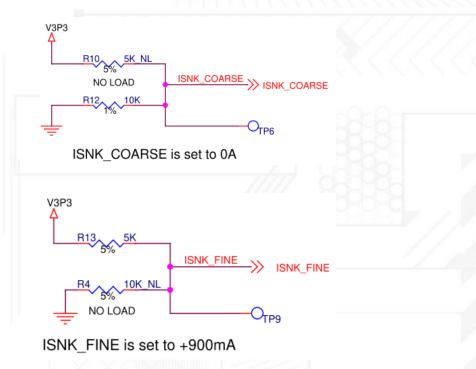



# **Schematic Overview (3/3)**

VBUS\_MIN ≤ Requested Voltage ≤ VBUS\_MAX




VBUS\_MAX is decided by the rotary switch

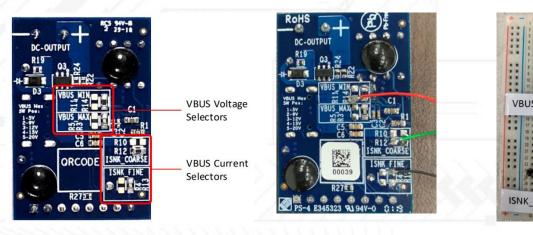


**VBUS\_MIN** and **VBUS\_MAX** Resistor Options Table

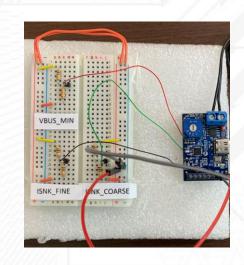
| VIDLIC MAY VIDLIC MIN | 5.1/ | 0.1/ | 40.1/  | 45.1/ | 40.1/ | 00.1/ |
|-----------------------|------|------|--------|-------|-------|-------|
| VBUS_MAX, VBUS_MIN    | 5 V  | 9 V  | 12 V   | 15 V  | 19 V  | 20 V  |
| PULLUP (R3, R11)      | None | 5 kΩ | 5 kΩ   | 5.kΩ  | 5 kΩ  | 0 kΩ  |
| PULLDOWN (R5, R14)    | 0 kΩ | 1 kΩ | 2.4 kΩ | 5 kΩ  | 10 kΩ | None  |

#### Requested (RDO) current = ISNK\_COARSE + ISNK\_FINE




#### ISNK\_COARSE and ISNK\_FINE Resistor Options Table

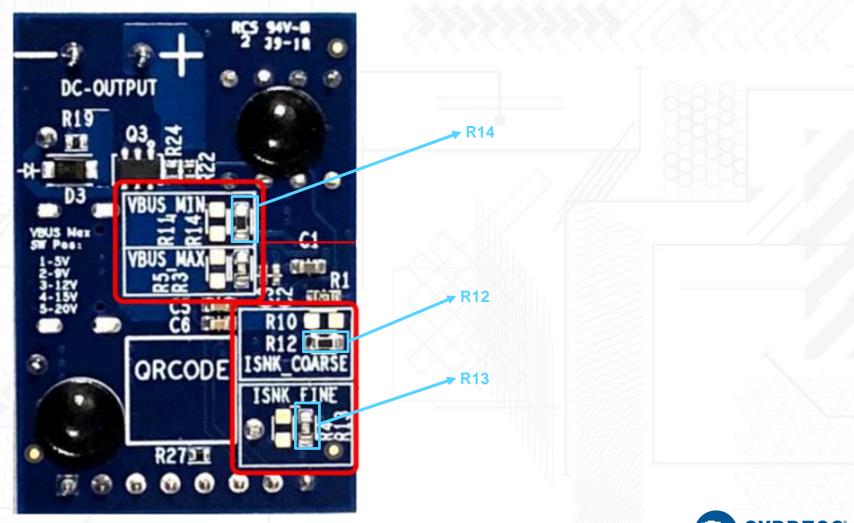
| ILIM_COARSE       | 0 A  | 1 A    | 2 A    | 3 A    | 4 A   | 5 A  |
|-------------------|------|--------|--------|--------|-------|------|
| ILIM_FINE         | 0 mA | 250 mA | 500 mA | 750 mA | 900   | mA   |
| PULLUP (R10, R13) | None | 5 kΩ   | 5 kΩ   | 5 kΩ   | 5 kΩ  | 0 kΩ |
| PULLDOWN (R12, 4) | 0 kΩ | 1 kΩ   | 2.4 kΩ | 5. kΩ  | 10 kΩ | None |




## **Preliminary System Setup**

- 1 Remove R14, R12, and R13 resistors on CY4533
- 2 Solder three wires on VBUS\_MIN, ISNK\_COARSE, and ISNK\_FINE pad
- 3 Prepare the resistors and bread board for resistor divider for VBUS\_MIN, ISNK\_COARSE, and ISNK\_FINE
- 4 Prepare a Type-C power adapter supporting your device's power profile
- 5 Prepare Dupont cables for CY4533 and bread board connection

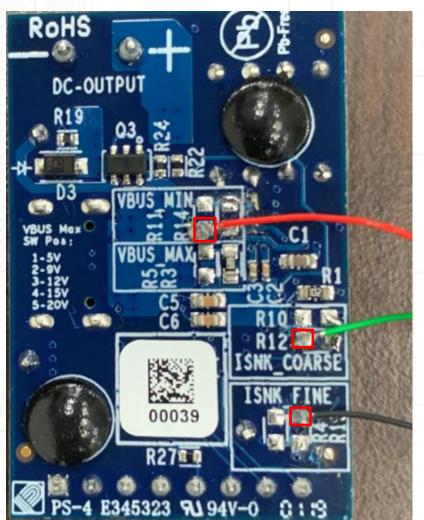









# **Preliminary System Setup (1/5)**


Step 1: Remove R14, R12, and R13 resistors on CY4533





# **Preliminary System Setup (2/5)**

Step 2: Solder three wires on VBUS\_MIN, ISNK\_COARSE, and ISNK\_FINE pad



VBUS\_MIN

ISNK\_COARSE

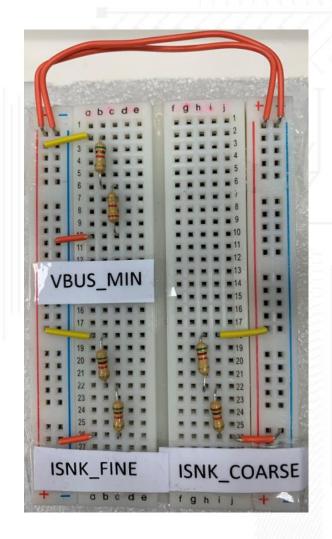
**ISNK FINE** 



# **Preliminary System Setup (3/5)**

Step 3: Prepare resistors and bread board for resistor divider for VBUS\_MIN, ISNK\_COARSE, and ISNK\_FINE

#### VBUS\_MIN


| VBUS_MIN | 5 V  | 9 V  | 12 V   | 15 V | 19 V  | 20 V |
|----------|------|------|--------|------|-------|------|
| PULLUP   | None | 5 kΩ | 5 kΩ   | 5 kΩ | 5 kΩ  | 0 kΩ |
| PULLDOWN | 0 kΩ | 1 kΩ | 2.4 kΩ | 5 kΩ | 10 kΩ | None |

#### ISNK\_COARSE

| ILIM_COARSE | 0A   | 1 A  | 2 A    | 3 A  | 4 A   | 5 A  |
|-------------|------|------|--------|------|-------|------|
| PULLUP      | None | 5 kΩ | 5 kΩ   | 5 kΩ | 5 kΩ  | 0 kΩ |
| PULLDOWN    | 0 kΩ | 1 kΩ | 2.4 kΩ | 5 kΩ | 10 kΩ | None |

#### ISNK\_FINE

| ILIM_FINE | 0 mA | 250 mA | 500 mA | 750 mA | 900 mA |
|-----------|------|--------|--------|--------|--------|
| PULLUP    | None | 5 kΩ   | 5 kΩ   | 5 kΩ   | 0 kΩ   |
| PULLDOWN  | 0 kΩ | 1 kΩ   | 2.4 kΩ | 5 kΩ   | None   |





# **Preliminary System Setup (4/5)**

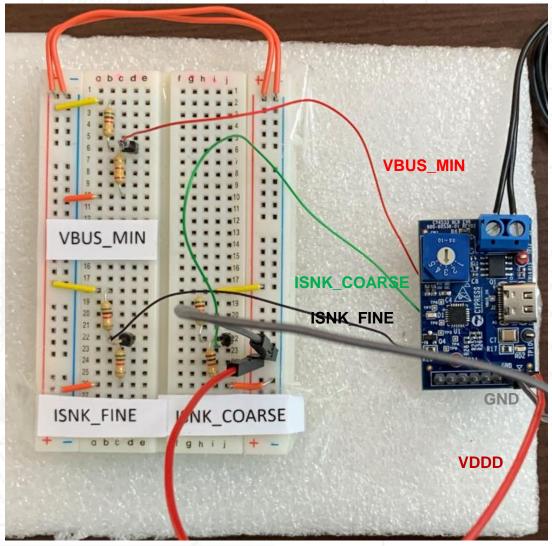
Step 4: Prepare a Type-C power adapter supporting your device's power profile



Profile 1: 5 V/3 A

Profile 2: 9 V/3 A

Profile 3: 12 V/3 A


Profile 4: 15 V/3 A

Profile 5: 20 V/2.25 A



# **Preliminary System Setup (5/5)**

Step 5: Prepare Dupont cables for CY4533 and bread board connection





# Lab 1: Power up Xiaomi Smart Speaker through BCR

#### Objectives

- Learn how to design the right voltage and current spec to match the device spec
- Capture and analyze traffic over a Type-C interface using a CY4500 EZ-PD Protocol Analyzer kit

#### Hardware tools

- EZ-PD BCR Evaluation Kit (CY4533)
- EZ-PD Protocol Analyzer (CY4500)
- Type-C Power Adapter
- Multimeter
- Barrel Connectors Cable
- Dupont Cables, Resistors, and Bread Board
- Smart Speaker

#### Software tools

EZ-PD Analyzer Utility



# Power up Xiaomi Smart Speaker through BCR (1/8)

### Step 1:

Confirm the device's input voltage and current specification

Xiaomi Mi Al Speaker

Frequency Range: 60Hz-15000Hz (-60dB)

Bluetooth version: Bluetooth 4.1 Speaker Sensitivity: 82dB/m/W

Microphone: 6pcs

Horn Impedance:  $4\Omega$ 

CPU: 64-bit Cortex A53 quad-core 1.2GHz

Working Distance: 10m

Memory: 256MB

Flash: 256M BDual Wi-Fi

Bluetooth: 4.1

Support: A2DP music player Rated Output Power: >5W

Power Supply Specification: DC 12V 1.75A





# Power up Xiaomi Smart Speaker through BCR (2/8)

Step 2:

Select a barrel connector to match your device







## Power up Xiaomi Smart Speaker through BCR (3/8)

#### Step 3:

Check the look-up table to find the right pull-up and pull-down resistors to meet up the device's voltage and current spec

#### VBUS\_MIN and VBUS\_MAX Resistor Options Table

| VBUS_MAX, VBUS_MIN | 5 V  | 9 V  | 12 V   | 15 V | 19 V  | 20 V |
|--------------------|------|------|--------|------|-------|------|
| PULLUP (R3, R11)   | None | 5 kΩ | 5 kΩ   | 5.kΩ | 5 kΩ  | 0 kΩ |
| PULLDOWN (R5, R14) | 0 kΩ | 1 kΩ | 2.4 kΩ | 5 kΩ | 10 kΩ | None |

VBUS\_MIN = 12 V (R11,R14) = (5k, 2.4k) VBUS\_MAX = 12 V (R3,R5) = (5k, 2.4k)

> VBUS\_MAX Rotary Switch Options

Position 1 = 5V

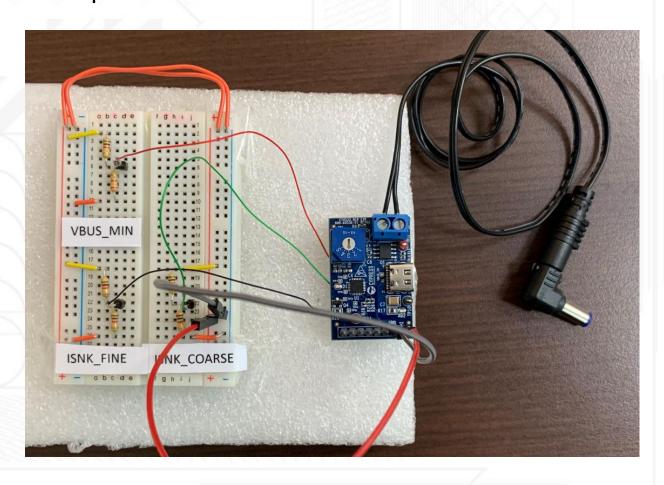
Position 2 = 9V

Position 3 = 12V

Position 4 = 15V

Position 5 = 20V

#### ISNK\_COARSE and ISNK\_FINE Resistor Options Table


| ILIM_COARSE       | 0 A  | 1A     | 2 A    | 3 A    | 4 A   | 5 A  |
|-------------------|------|--------|--------|--------|-------|------|
| ILIM_FINE         | 0 mA | 250 mA | 500 mA | 750 mA | 900   | mA   |
| PULLUP (R10, R13) | None | 5 kΩ   | 5 kΩ   | 5 kΩ   | 5 kΩ  | 0 kΩ |
| PULLDOWN (R12, 4) | 0 kΩ | 1 kΩ   | 2.4 kΩ | 5. kΩ  | 10 kΩ | None |

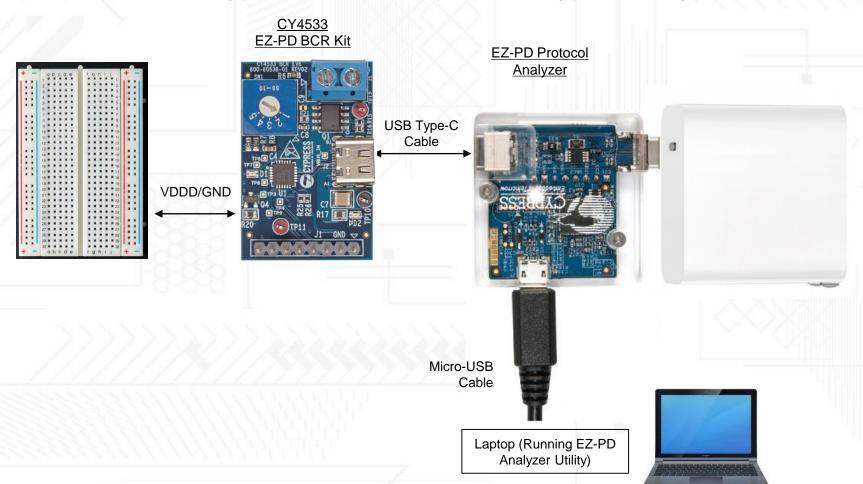
ISNK\_COARSE = 1A (R10, R12) = (5k, 1k)ISNK\_FINE = 750mA (R13, R4) = (5k, 5k)



### Power up Xiaomi Smart Speaker through BCR (4/8)

Step 4: Set up the CY4533 Kit and bread board



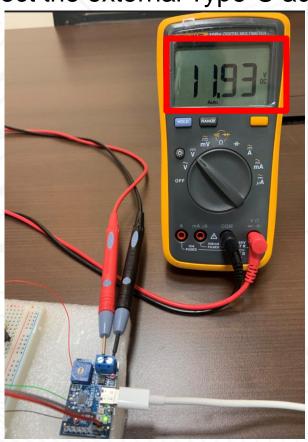

- a. Connect the VDDD to the pull-up resistor high side
- b. Connect the GND to pull-down resistor low side
- c. Select the VBUS\_MAX through the rotary switch
- d. Connect the VBUS\_MIN pin to the corresponding resistor divider
- e. Connect the ISNK\_COARSE pin to the corresponding resistor divider
- f. Connect the ISNK\_FINE pin to the corresponding resistor divider
- g. Connect barrel connector cable to the VBUS terminal Make sure the barrel connector cable positive and negative pins are connected to the right polarity of the VBUS terminal



## Power up Xiaomi Smart Speaker through BCR (5/8)

### Step 5:

Connect CY4533 and Type-C Power Adapter with Type-C to Type-C Cable and CY4500





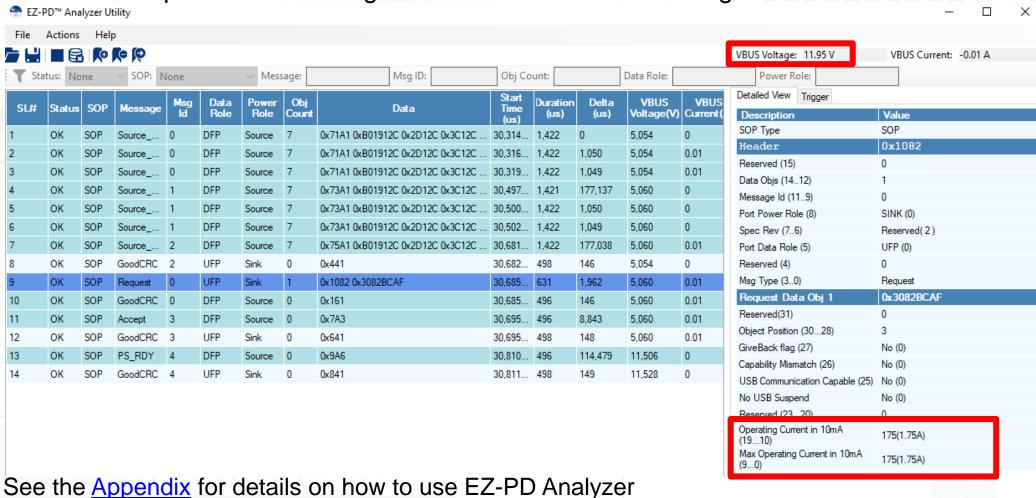

## Power up Xiaomi Smart Speaker through BCR (6/8)

#### Step 6:

Connect the external Type-C adapter to your CY4533 setup



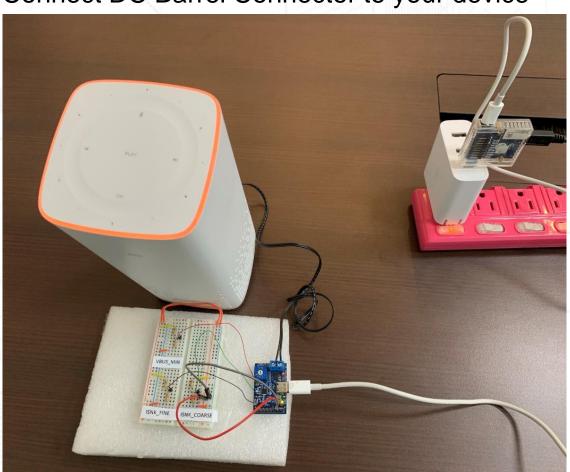
- a. Make sure the voltage on the VBUS terminal is what you expect
- b. Make sure there is no blinking LED on CY4533
- c. Make sure there is no FAULT LED lit on CY4533


Make sure you do not connect the barrel connector to the device at this stage



## Power up Xiaomi Smart Speaker through BCR (7/8)

#### Step 7:


Check the request VBUS voltage and current is correct through CY4500





## Power up Xiaomi Smart Speaker through BCR (8/8)

Step 8:
Connect DC Barrel Connector to your device

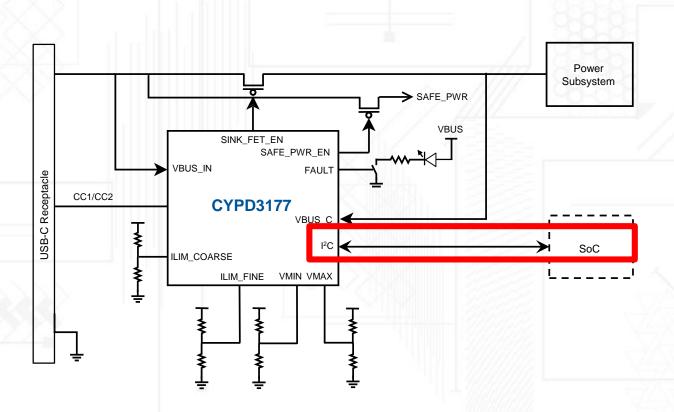


- a. Make sure your device is powered up normally
- b. Done and enjoy!



### Lab 2: Control BCR through I<sup>2</sup>C by external MCU/SOC

#### Objectives


- Learn how design and control BCR with external MCU/SOC
- Use the MiniProg3 as I<sup>2</sup>C Master to control BCR through Bridge Control Panel
- Capture and analyze traffic over a Type-C interface using a CY4500 EZ-PD Protocol Analyzer Kit

#### Hardware tools

- EZ-PD BCR Evaluation Kit (CY4533)
- EZ-PD Protocol Analyzer (CY4500)
- MiniProg3 (CY8CKIT-002)
- Type-C Power Adapter (5V/9V/12V/15V/20V)
- Dupont Cables, Resistors, and Bread Board

#### Software tools

- EZ-PD Analyzer Utility
- Bridge Control Panel





## Control BCR through I<sup>2</sup>C by external MCU/SOC (1/5)

#### Step 1:

Set up your bread board to support 5 V/0.9 A on CY4533

#### VBUS\_MIN and VBUS\_MAX Resistor Options Table

| VBUS_MAX, VBUS_MIN | 5 V  | 9 V  | 12 V   | 15 V | 19 V  | 20 V |
|--------------------|------|------|--------|------|-------|------|
| PULLUP (R3, R11)   | None | 5 kΩ | 5 kΩ   | 5.kΩ | 5 kΩ  | 0 kΩ |
| PULLDOWN (R5, R14) | 0 kΩ | 1 kΩ | 2.4 kΩ | 5 kΩ | 10 kΩ | None |

VBUS\_MIN = 
$$5 \text{ V } (R11, R14) = (None, 0)$$
  
VBUS\_MAX =  $5 \text{ V } (R3, R5) = (None, 0)$ 

#### VBUS\_MAX Rotary Switch Options

Position 1 = 5V

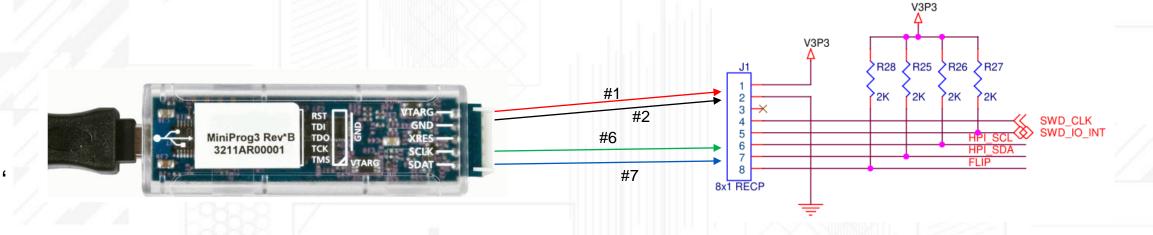
Position 2 = 9V

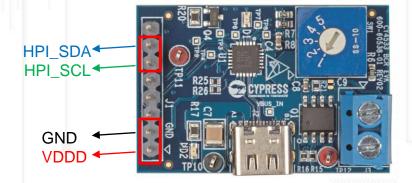
Position 3 = 12V

Position 4 = 15V

Position 5 = 20V

#### ISNK\_COARSE and ISNK\_FINE Resistor Options Table


| ILIM_COARSE       | 0 A  | 1A     | 2 A    | 3 A    | 4 A   | 5 A  |
|-------------------|------|--------|--------|--------|-------|------|
| ILIM_FINE         | 0 mA | 250 mA | 500 mA | 750 mA | 900   | mA   |
| PULLUP (R10, R13) | None | 5 kΩ   | 5 kΩ   | 5 kΩ   | 5 kΩ  | 0 kΩ |
| PULLDOWN (R12, 4) | 0 kΩ | 1 kΩ   | 2.4 kΩ | 5. kΩ  | 10 kΩ | None |

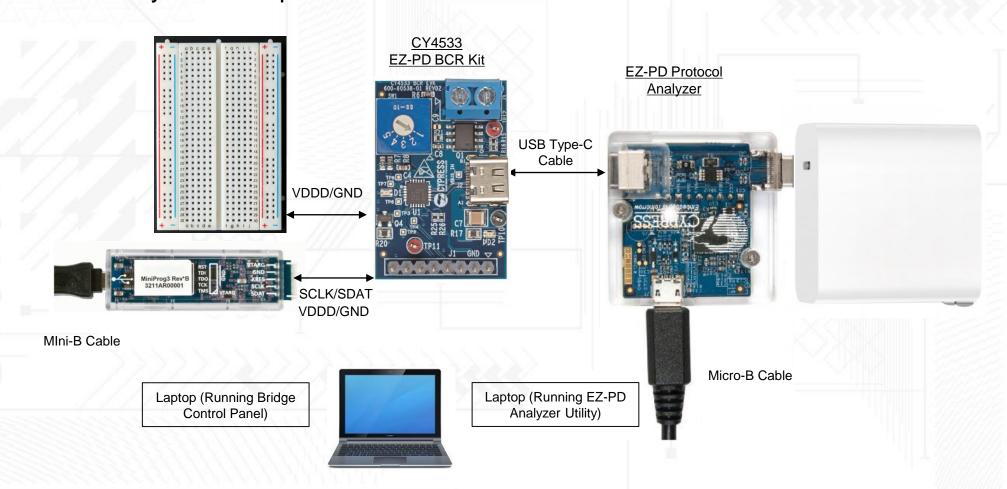



## Control BCR through I<sup>2</sup>C by external MCU/SOC (2/5)

#### Step 2:

Connect your MiniProg3 SCLK and SDAT to your CY4533 HPI\_SCL and HPI\_SDA on J1 connector



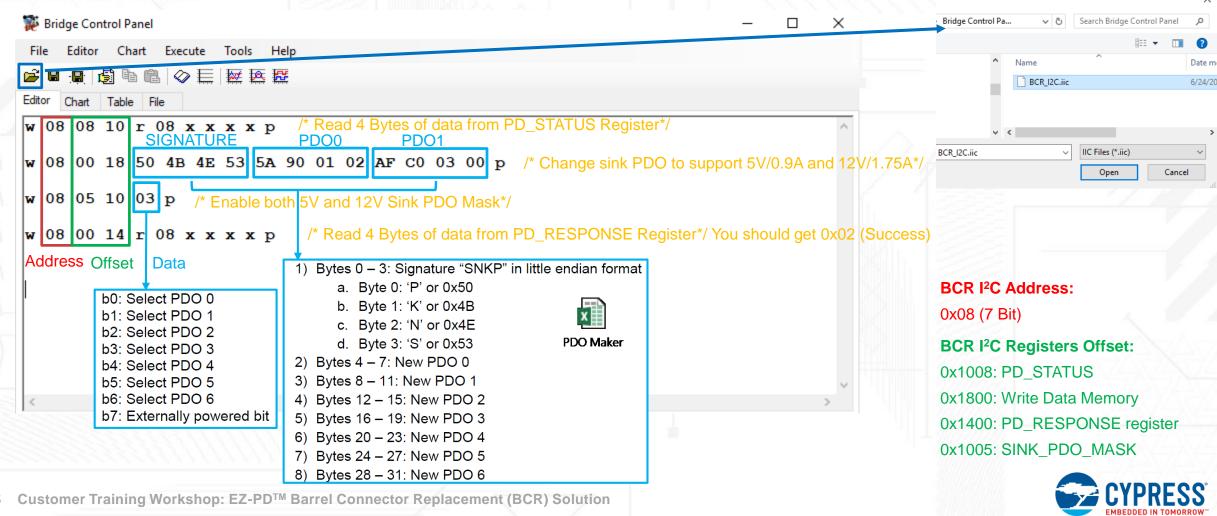





## Control BCR through I<sup>2</sup>C by external MCU/SOC (3/5)

#### Step 3:

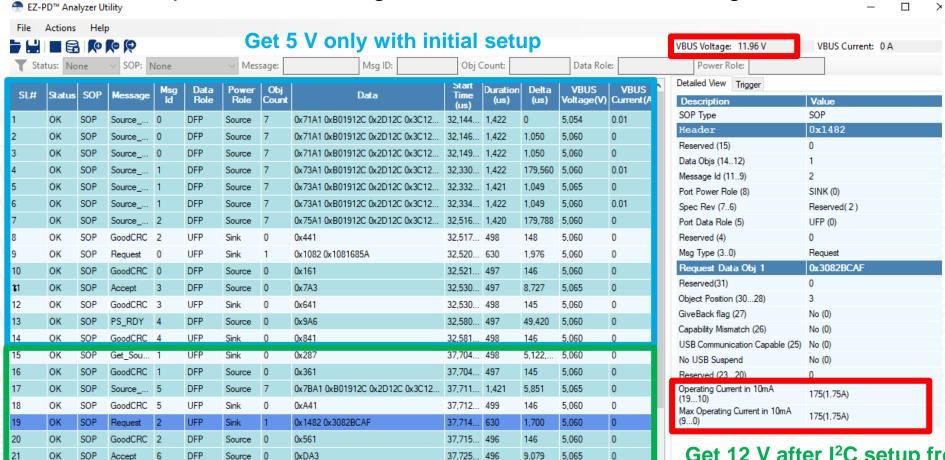
Follow the system setup shown below






## Control BCR through I<sup>2</sup>C by external MCU/SOC (4/5)

#### Step 4:


Open the example I<sup>2</sup>C Read and Write Command in Bridge Control Panel to control BCR



## Control BCR through I<sup>2</sup>C by external MCU/SOC (5/5)

#### Step 5:

Check the request VBUS voltage and current is correct through CY4500

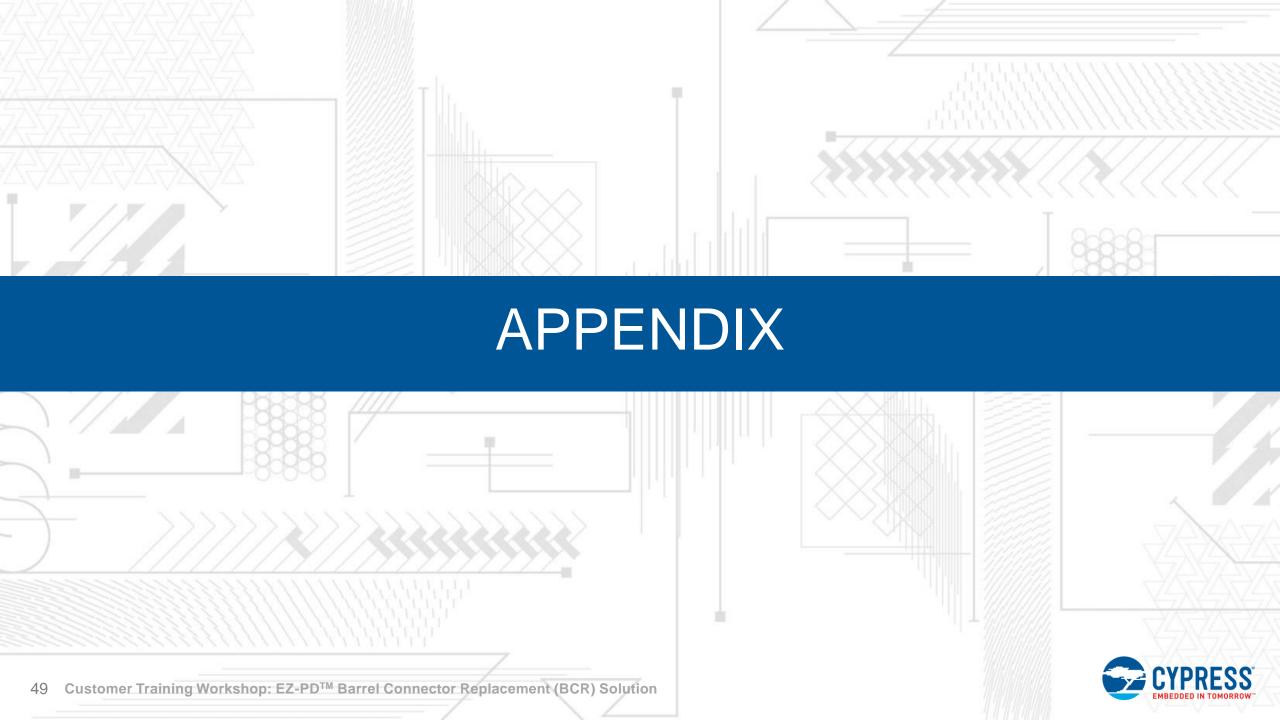


Get 12 V after I<sup>2</sup>C setup from MCU/SOC

See the Appendix for details on how to use EZ-PD Analyzer

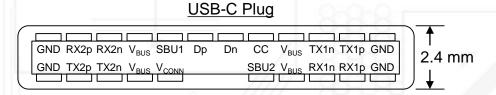


## Control BCR through I<sup>2</sup>C by external MCU/SOC (5/5)


#### Step 5:

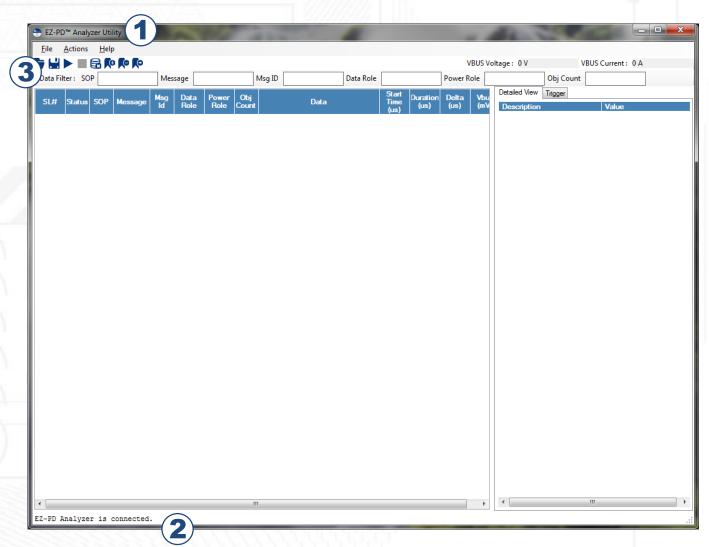
Check the request VBUS voltage and current is correct through CY4500

| €Z-I | PD™ Ana | lyzer Ut | tility       |      |      |        |       |                                 |              |          |         |            |      |     |                                         |                   |
|------|---------|----------|--------------|------|------|--------|-------|---------------------------------|--------------|----------|---------|------------|------|-----|-----------------------------------------|-------------------|
| ile  | Actions | Help     | р            |      |      |        |       |                                 |              |          |         |            |      |     |                                         |                   |
|      |         |          | <b>K</b> e K |      |      | G      | et 5  | V Only with Init                | ial S        | Setu     | D       |            |      | ١   | /BUS Voltage: 11.96 V                   | VBUS Current: 0 A |
| Sta  | tus: No | ne       | ∨ SOP: N     | Vone |      |        | sage: | Msg ID:                         |              | Count:   | -       | Data Role  | e:   |     | Power Role:                             |                   |
|      |         |          |              | Msg  | Data | Power  | Obj   |                                 | Start        | Duration | Delta   | VBUS       | VBUS | . [ | Detailed View Trigger                   |                   |
| SL#  | Status  | SOP      | Message      | ld   | Role | Role   | Count | Data                            | Time<br>(us) | (us)     | (us)    | Voltage(V) |      | Ш   | Description                             | Value             |
|      | ок      | SOP      | Source       | 0    | DFP  | Source | 7     | 0x71A1 0xB01912C 0x2D12C 0x3C12 | 32,144       | 1,422    | 0       | 5,054      | 0.01 | ш   | SOP Type                                | SOP               |
|      | ОК      | SOP      | Source       | 0    | DFP  | Source | 7     | 0x71A1 0xB01912C 0x2D12C 0x3C12 | 32,146       | 1,422    | 1,050   | 5,060      | 0    | ш   | Header                                  | 0x1482            |
|      | ОК      | SOP      | Source       |      | DFP  | Source | 7     | 0x71A1 0xB01912C 0x2D12C 0x3C12 | 32.149       | 1.422    | 1.050   | 5.060      | 0    |     | Reserved (15)                           | 0                 |
|      | ОК      | SOP      | Source       |      | DFP  | Source | 7     |                                 | 32,330       |          | 179,560 |            | 0.01 |     | Data Objs (1412)                        | 1                 |
|      | ок      | SOP      | Source       |      | DFP  | Source | 7     |                                 | 32,332       |          | 1,049   | 5.065      | 0    |     | Message Id (119)                        | 2                 |
|      | ок      | SOP      | Source       |      | DFP  | Source | 7     | 0x73A1 0xB01912C 0x2D12C 0x3C12 |              |          | 1,049   |            | 0.01 |     | Port Power Role (8)                     | SINK (0)          |
|      | ОК      | SOP      | Source       |      | DFP  | Source | 7     |                                 | 32,516       |          | 179,788 | 5.060      | 0.01 |     | Spec Rev (76)                           | Reserved(2)       |
|      | OK      | SOP      | GoodCRC      |      | UFP  | Sink   | 0     | 0x441                           | 32,516       |          | 1/3,/66 | 5,060      | 0    |     | Port Data Role (5)<br>Reserved (4)      | UFP (0)<br>0      |
|      |         | SOP      |              |      | UFP  |        | 1     | 0x1082 0x1081685A               |              |          |         |            |      |     | Msq Type (30)                           | Request           |
|      | OK      |          |              | 0    |      | Sink   |       |                                 | 32,520       |          | 1,976   | 5,060      | 0    |     | Request Data Obj 1                      | 0x3082BCAF        |
| )    | OK      | SOP      | GoodCRC      | -    | DFP  | Source | 0     | 0x161                           | 32,521       |          | 146     | 5,060      | 0    |     | Reserved(31)                            | 0                 |
| 1    | OK      | SOP      |              | 3    | DFP  | Source |       | 0x7A3                           | 32,530       |          | 8,727   | 5,065      | 0    |     | Object Position (3028)                  | 3                 |
| 2    | OK      | SOP      | GoodCRC      |      | UFP  | Sink   | 0     | 0x641                           | 32,530       |          | 145     | 5,060      | 0    |     | GiveBack flag (27)                      | No (0)            |
| }    | OK      | SOP      | PS_RDY       |      | DFP  | Source | 0     | 0x9A6                           | 32,580       |          | 49,420  | 5,060      | 0    |     | Capability Mismatch (26)                | No (0)            |
|      | OK      | SOP      | GoodCRC      | 4    | UFP  | Sink   | 0     | 0x841                           | 32,581       | 498      | 146     | 5,060      | 0    |     | USB Communication Capable (25)          | No (0)            |
| )    | OK      | SOP      | Get_Sou      | 1    | UFP  | Sink   | 0     | 0x287                           | 37,704       | 498      | 5,122,  | 5,060      | 0    |     | No USB Suspend                          | No (0)            |
| i .  | ОК      | SOP      | GoodCRC      | 1    | DFP  | Source | 0     | 0x361                           | 37,704       | 497      | 145     | 5,060      | 0    |     | Reserved (23 20)                        | n                 |
| 7    | OK      | SOP      | Source       | 5    | DFP  | Source | 7     | 0x7BA1 0xB01912C 0x2D12C 0x3C12 | 37,711       | 1,421    | 5,851   | 5,065      | 0    |     | Operating Current in 10mA<br>(1910)     | 175(1.75A)        |
| 8    | OK      | SOP      | GoodCRC      | 5    | UFP  | Sink   | 0     | 0xA41                           | 37,712       | 499      | 146     | 5,060      | 0    | _   | (1910)<br>Max Operating Current in 10mA | ,                 |
| 9    | ОК      | SOP      | Request      | 2    | UFP  | Sink   | 1     | 0x1482 0x3082BCAF               | 37,714       | 630      | 1,700   | 5,060      | 0    |     | (90)                                    | 175(1.75A)        |
| )    | ОК      | SOP      | GoodCRC      | 2    | DFP  | Source | 0     | 0x561                           | 37,715       | 496      | 146     | 5,060      | 0    |     |                                         |                   |
| 1    | OK      | SOP      | Accept       | 6    | DFP  | Source | 0     | 0xDA3                           | 37,725       | 496      | 9,079   | 5,065      | 0    |     |                                         |                   |


See the Appendix for details on how to use EZ-PD Analyzer Get 12 V after I2C setup from MCU/SOC






### **Glossary**

- USB Power Delivery (USB-PD, Power Delivery, PD, PD 3.0)
  - A new USB standard that increases power delivery over V<sub>BUS</sub> from 7.5 W to 100 W
  - Both USB hosts (e.g., PCs) and USB devices (e.g., hard disk drives) can act as either a provider<sup>1</sup> (DFP Downstream Facing Port) or a consumer<sup>2</sup> (UFP Upstream Facing Port) of power
- USB-C (USB Type-C, Type-C)
  - A new standard with a slimmer and reversible USB plug, a reversible cable, multiple protocol support, and 100-W PD





### How to Use EZ-PD Analyzer Utility (1/2)

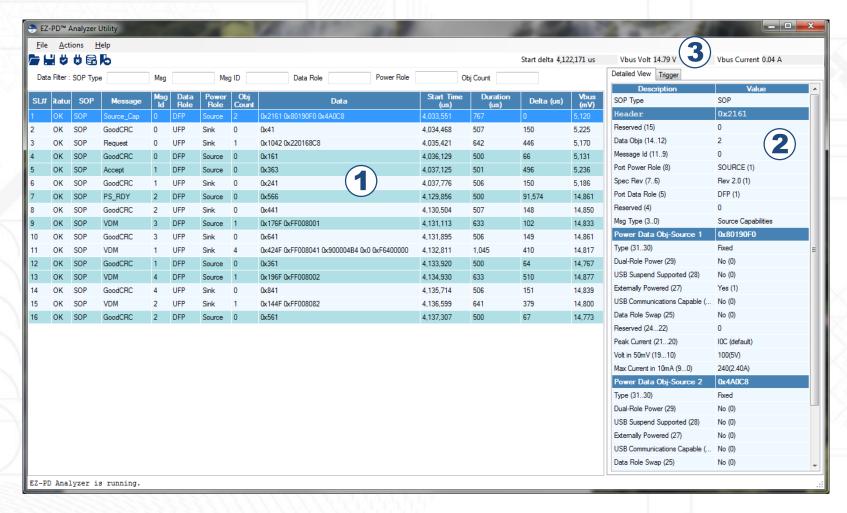


#### <u>Steps</u>

1 Start EZ-PD Analyzer Utility:

Windows Start Menu >

All Programs >


Cypress Folder >

**EZ-PD** Analyzer Utility

- 2 Make sure the bottom left of program window says EZ-PD Analyzer is Connected
- 3 Click the **Start Capturing** button on the button bar



### How to Use EZ-PD Analyzer Utility (2/2)



#### **Steps**

- 1 The capture window shows a list of all the PD messages seen on the Type-C connection
- 2 The description window shows a detailed, "decoded" view of a specific PD message
- 3 The live VBUS voltage and current measurements are also captured. Positive current flows from receptacle to plug



## **How VBUS Voltage is Determined by BCR**

| Voltage on VBUS_MAX or<br>VBUS_MIN Pin of BCR<br>Device (V) | Correlated VBUS<br>Voltage(V) | Pull-Up Resistor Value<br>for R3 or R11 (kΩ) | Pull-Down Resistor Value<br>for R5 or R14 (kΩ) |
|-------------------------------------------------------------|-------------------------------|----------------------------------------------|------------------------------------------------|
| 3.3 * (0/6)                                                 | 5                             | None (DNP)                                   | 0                                              |
| 3.3 * (1/6)                                                 | 9                             | 5                                            | 1                                              |
| 3.3 * (2/6)                                                 | 3.3 * (2/6) 12                |                                              | 2.4                                            |
| 3.3 * (3/6)                                                 | 15                            | 5                                            | 5                                              |
| 3.3 * (4/6)                                                 | 19                            | 5                                            | 10                                             |
| 3.3 * (6/6)                                                 | 20                            | 0                                            | None (DNP)                                     |



## **How VBUS Current is Determined by BCR**

| Voltage on ISNK_COARSE (V) | Pull-Up Resistor on<br>ISNK_COARSE (R10)<br>(kΩ) | Pull-Down Resistor on ISNK_COARSE (R12) (kΩ) | ISNK_COARSE<br>(A) |
|----------------------------|--------------------------------------------------|----------------------------------------------|--------------------|
| 3.3 * (0/6)                | None (DNP)                                       | 0                                            | 0                  |
| 3.3 * (1/6)                | 5                                                | 1                                            | 1                  |
| 3.3 * (2/6)                | 5                                                | 2.4                                          | 2                  |
| 3.3 * (3/6)                | 5                                                | 5                                            | 3                  |
| 3.3 * (4/6)                | 5                                                | 10                                           | 4                  |
| 3.3 * (6/6)                | 0                                                | None (DNP)                                   | 5                  |

| Voltage on ISNK_FINE (V) | Pull-Up Resistor on ISNK_FINE (R13) (kΩ) | Pull-Down Resistor on ISNK_FINE (R4) (kΩ) | ISNK_FINE (mA) |
|--------------------------|------------------------------------------|-------------------------------------------|----------------|
| 3.3 * (0/6)              | None                                     | 0                                         | 0              |
| 3.3 * (1/6)              | 5                                        | 1                                         | 250            |
| 3.3 * (2/6)              | 5                                        | 2.4                                       | 500            |
| 3.3 * (3/6)              | 3.3 * (3/6) 5                            |                                           | 750            |
| 3.3 * (6/6)              | 0                                        | None (DNP)                                | 900            |



# BCR HPI – PD\_STATUS Register

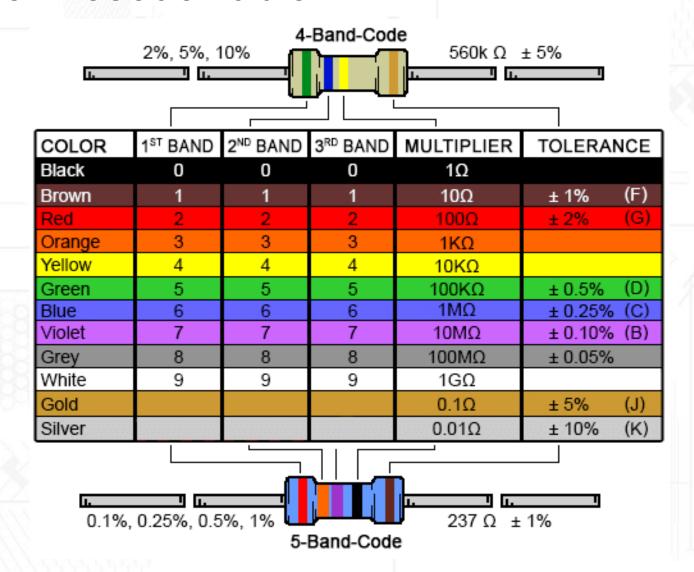
| Default Config | Bit0-5                                            | 0x00                                       |
|----------------|---------------------------------------------------|--------------------------------------------|
| Current Config | Bit0-5                                            | 0x00                                       |
|                | Bit6: Current Port Data Role                      | 0: UFP/1:DFP                               |
|                | Bit7: Reserve                                     | 0                                          |
|                | Bit8: Current Port Role                           | 0: Sink                                    |
|                | Bit9: Reserve                                     | 0                                          |
|                | Bit10: Contract State                             | No Explicit Contract     Explicit Contract |
|                | Bit11-13: Reserve                                 | 0                                          |
|                | Bit14: Sink Tx Ready                              | 0: In Tx Ready<br>1: Not in Tx Ready       |
|                | Bit15: Policy Engine State                        | 0: Not in PE_SNK_Ready 1: In PE_SNK_Ready  |
|                | Bit16-17: PD Spec Revision                        | 0: PD2.0<br>1: PD3.0                       |
|                | Bit18: Partner PD Spec Revision                   | 0: PD2.0<br>1: PD3.0                       |
|                | Bit19: Partner Unchunked Extended Message Support | 0: Don't Support<br>1: Support             |
|                | Bit20-31: Reserve                                 | 0                                          |



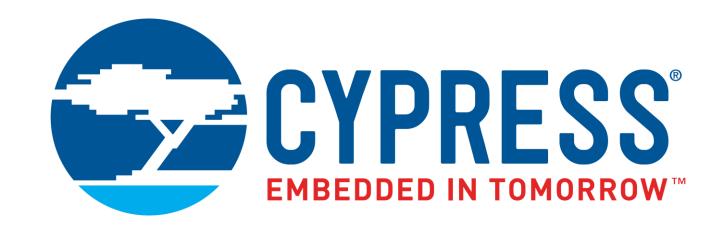
# BCR HPI – PD\_RESPONSE Register

| Response Code                | Byte0/Bit7: Type of Response | 0: Response to Command 1: Async Event  |
|------------------------------|------------------------------|----------------------------------------|
| Bit0-5                       | Byte0/Bit0-6: Response Code  | See the response code below            |
| Bit6: Current Port Data Role | Byte1                        | Length of the response if length < 256 |
| Bit7: Reserve                | Byte2-3                      | Length of the response if length > 256 |

| TYPE Responses to          |      | onses to         | Commands                                                                                                                                                |  |  |  |  |
|----------------------------|------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RESPONSE N                 | IAME | CODE DESCRIPTION |                                                                                                                                                         |  |  |  |  |
| No Response                |      | 0x00             | No Response  No outstanding command or event in BCR. Or BCR is processing a command that will take a long time to complete.                             |  |  |  |  |
| Success 0x02               |      | 0x02             | Success  Command was handled successfully. Refer to the specific Command Register definition to understand what a successful handling of command means. |  |  |  |  |
| Invalid Com<br>or Argumen  |      | 0x05,<br>0x09    | Invalid Command or Argument  Partial register writes, reserved bits set, unexpected command code or unexpected command sizes.                           |  |  |  |  |
| Not Supported 0x0A         |      | 0x0A             | Command Not Supported in mode  Command is not supported in the current mode                                                                             |  |  |  |  |
| Transaction 0x0C<br>Failed |      | 0x0C             | Transaction Failed  The PD message was not sent successfully  1. GoodCRC was not received in response to BCR sending the command.                       |  |  |  |  |




## BCR HPI - SELECT\_SINK\_PDO


| NAME<br>ADDRESS<br>SIZE | SELECT_SINK_PDO 0x1005 1-byte |     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|-------------------------|-------------------------------|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| FIELD NAME              |                               | R/W | FIELD OFFSET | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Sink PDO M              | ask                           | WO  | Byte 0       | Bit 0: Enable PDO 1 Bit 1: Enable PDO 2 Bit 2: Enable PDO 3 Bit 3: Enable PDO 4 Bit 4: Enable PDO 5 Bit 5: Enable PDO 6 Bit 6: Enable PDO 7 Bit 7: Set the "Unconstrained Power" bit in PDO 1 Once this register is written to, BCR will check if the first 4 bytes of Data Memory has the "SNKP" signature.  If signature is present, it updates the Sink PDO list and uses the mask as specified in Bits 06.  If signature is not present, it enables PDOs selected by the mask in Bits 06.  If all bits are 0x00 then BCR will fall back to the default Sink PDOs as determined by the 4 configuration pins. |  |  |



### **Resistor Color Decode Table**





