

如何打造强大、智能、易于使用的HMI应用 CapSense[®] 电容式感应 与 MagSense™ 电感式感应 Harris Chan 高级现场应用工程师

审举投北八三五公式十十个资人
委晋拉 斯公可及创 新 拉 个 间 介

→ CapSense 与 MagSense 的对比

→ 手把手实验: MagSense 电感式感应

→ PSoC[®] MCU 发展路线图

→ 入门参考资料

Cypress' Industry-Leading Portfolio of Embedded Solutions

Wireless radio standards and combinations

- Wi-Fi (802.11ac, 802.11bgn), Bluetooth (BR, EDR, BLE)
- Advanced coexistence algorithms for multi-radio (Wi-Fi + Bluetooth) platforms

Broad portfolio of Arm[®]-based MCUs

- PSoC 4: Arm Cortex[®] M0 and M0+ devices ideal for HMI, sensor hubs, and other mixed-signal subsystems
- PSoC 6: Most-flexible, lowest-power, dual-core Arm Cortex-M4 and M0+ MCU—purpose-built for the IoT

Robust development tools and ecosystem partners

- WICED® IoT platform provides turnkey wireless connectivity
- PSoC Creator™ IDE speeds system configuration and design
- ModusToolbox™ Software Suite unifies MCU and wireless development environments

PSoC[®] Creator™

WIGED

Cypress' Innovation

Cypress MCUs have been at the heart of industrial, consumer and automotive revolutions, offering game changing technologies and altering the way products evolve.

PSoC: Your Problem Solver on Chip

Ultimate Mixed-Signal Flexibility

CapSense / MagSense

- Industry-leading capacitive and inductive sensing solutions
- Touch, metal detection, proximity sensing and liquid-sensing applications

Programmable Analog Blocks

- Customize analog front end to interface to analog sensors
- Comprised of ADC, DAC, opamps and comparators

Programmable Digital Blocks

- Configurable SCB and TCPWM blocks for digital peripherals
- Programmable UDB blocks for digital glue logic

Wired and Wireless Connectivity

- Wired connectivity interface such as CAN and USB
- Wireless connectivity such as Bluetooth Low Energy

Security

- Implements cryptographic algorithms including ECC and AES with an integrated hardware coprocessor
- Provides secure, internal storage for firmware, applications, and secure assets such as cryptographic keys

Capacitive and Inductive Sensing

Enhancing User Interfaces

Cypress has changed the face of industrial design in consumer electronics, cars, and white goods, with its industry-leading CapSense and MagSense solutions. CapSense and MagSense solutions provide robust, intelligent, and easy-to-use sensing functionality to your design.

MOUSER

Senzei™ Capacitive and Inductive Sensing

Enhancing User Interfaces

- Senzei suite of sensing solutions
 - CapSense is the industry's leading self- and mutualcapacitive sensing solution for touch buttons and sliders, proximity detection, and liquid-level sensing
 - MagSense senses minute deflections or movements of metal, enabling sleek and futuristic user interfaces with metallic overlays
 - MagSense and CapSense can co-exist, even as one sensor, and provides a fool-proof solution that can not only detect any kind of object but also rejects false touches caused due to stress, wear and tear, or environmental changes

CapSense Capacitive Sensing vs. MagSense Inductive Sensing

8 CYPRESS CONFIDENTIAL – MCU BU Update 2018

CapSense Capacitive-Sensing

Source: Electric Field Lines

Between two voltage potentials

CapSense Capacitive-Sensing

Self Capacitive Sensing (CapSense CSD)

- Self capacitive sensing occurs when one node of the capacitor is sensed.
- The second node of the capacitor is at a fixed potential (usually ground).

CapSense CSD operation

- The self-capacitance sensor is formed between the sensor electrode and neighboring ground lines (C_P).
- The total capacitance without a touch: $C_{CSD} = 2C_{P}$
- The total capacitance with a touch: $C_{CSD} = 2C_P + C_F$
- C_F is the capacitance between the sensor and the grounded finger and increases the capacitance with a touch.
- Note: The finger appears to be *grounded* because of the large capacitance between the human body and earth.

Self Capacitance Sensing (CSD)

CF = Capacitance added by a finger touch

CapSense Capacitive-Sensing

Mutual Capacitive Sensing (CapSense CSX)

- Mutual capacitive sensing occurs when there is access to **both** nodes of the capacitor.
- A transmit (TX) signal is driven onto one node and received at the other.
- A change in capacitance is detected as a change in signal at the receiver (RX).

CapSense CSX operation

- The mutual capacitance sensor is formed between the sensor RX electrode and the sensor TX electrodes (C_M).
- The total capacitance without a touch: $C_{CSD} = 2C_{M}$
- The total capacitance with a touch: $C_{CSD} = 2C_{M-}C_{F}$
- C_F is the capacitance between the sensor and the grounded finger and **decreases** the capacitance with a touch because it steals TX-RX field lines reducing C_M .
- Note: Mutual capacitance decreases with a touch while self-capacitance increases with a touch.

Mutual Capacitance Sensing (CSX)

We have access to **<u>both</u>** nodes of the capacitor.

CFM = Mutual-Cap reduction due to finger touch

MagSense Inductive-Sensing

- Driving an AC signal into an Inductive Coil creates a <u>magnetic</u> field
- Moving a metal target close to the field induces <u>eddy currents</u> in the target, changing the field.

Source: Magnetic Field Lines

MagSense Inductive-Sensing

Inductive-sensing (MagSense)

- The sensor forms a parallel LC tank that is excited at it's resonant frequency and the resulting signal is coupled into the RX through C_c .
- A change in L causes an amplitude change in the LC tank signal.

MagSense ISX operation

- The parallel resonant tank formed by the sensor L and a discrete C produces a sine wave when excited by LX.
- The magnetic field lines from the inductive sensor induces eddy currents in the metal target that oppose the sensor magnetic field lines, reducing the effective inductance (L) of the sensor.
- This reduction in L manifests itself as a reduction in the amplitude of the sine wave produced by the LC tank.
- Note: Inductive-sensing detects a change in magnetic field while capacitive-sensing detects a change in electric field.

Inductive Sensing (ISX)

The sensor forms a parallel LC tank that is excited by a signal (IX). The tank signal is then AC coupled into the RX.

CapSense and MagSense Summary

Inductive Sensing (ISX)

The sensor forms a parallel LC tank that is excited by a signal (IX). The tank signal is then AC coupled into the RX.

CapSense Use Cases

CapSense Buttons

CapSense Slider

Capacitive Trackpad

Proximity Detection

Capacitive Liquid Level Sense

Specific Absorption Rate

Capacitive Force sensing

Absolute Capacitance sensing

MagSense Use Cases

MagSense Metal Buttons

MagSense Metal Proximity

MagSense Rotary

MagSense Linear Transducer

Inductive senso

MagSense Flow Meter

Metal Target

CapSense vs. MagSense Comparison

	CapSense Capacitive sensing	MagSense Inductive sensing
Advantages	 Provides hybrid sensing (mutual and self capacitive-sensing methods) to enable advanced features such as proximity sensing, hover and glove touch, liquid tolerance Delivers multi-touch sensing capabilities (> 2 touch) Enables a low-cost system Enables ease-of design into an application 	 Provides robustness and reliability in harsh environment and surroundings Enables a fully water-proof system Enables underwater capabilities Provides proximity sensing, glove touch Provides reliable force sensing
Disadvantag es	 Not fully water-proof, but is liquid tolerant (rejects water) Easily affected by environment and surroundings Tuning can be difficult 	Complex HW designComplex HW design results in lower yieldTuning can be difficult

Hands-On

PSoC MCU Roadmap

CapSense[®] and MagSense[®] Portfolio

7	Configurable CapSense	Programmable CapSense	MagSense		
		CY8C4000 (new) 24 Buttons, Sliders 16 – 32 KB Flash Proximity, Liquid Tolerance SmartSense™ Auto-tuning	CY8C47xx (new) 16 Channels, 16 – 32 KB Flash, CapSense, MagSense		
		CY8C4000S36 Buttons, Sliders16 – 32KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuningCY8C4100S (Plus)54 Buttons, Sliders16 – 128KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning			
	CY8CMBR3002 2 Buttons, 2 LEDs SmartSense_EMCplus CY8CMBR301x 2-16 Buttons, 2 Sliders Proximity, Liquid Tolerance SmartSense_EMCplus™ ³	CY8C4000CY8C4100StatusCY8C4100StatusCY8C4200L16 Buttons, Sliders36 Buttons, Sliders54 Buttons, Sliders94 Buttons, Sliders8 - 16KB Flash16 - 32KB Flash32 - 128 KB Flash94 Buttons, SlidersProximity, Liquid Tolerance36 Buttons, Sliders32 - 128 KB Flash94 Buttons, SlidersProximity, Liquid Tolerance36 Buttons, Sliders16 - 32KB Flash94 Buttons, SlidersProximity, Liquid Tolerance36 Buttons, Sliders16 - 32KB Flash94 Buttons, SlidersProximity, Liquid Tolerance36 Buttons, Sliders16 - 32KB Flash94 Buttons, SlidersProximity, Liquid Tolerance36 Buttons, Sliders16 - 32KB Flash94 Buttons, SlidersProximity, Liquid Tolerance36 - 32KB Flash94 Buttons, Sliders16 - 32KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid ToleranceSmartSense™ Auto-tuning94 Buttons, Sliders16 - 256 KB FlashProximity, Liquid Toleran	CY8C47xxS 16 Channels, 16 – 32 KB Flash, CapSense, MagSense		
	CY8CMBR20xx 2-16 Buttons, 10 LEDs SmartSense Auto-tuning	CY8C20xxxCY8C21xxx25 Buttons, 6 Sliders31 Buttons, 6 Sliders8 – 32 KB Flash16 - 32KB FlashSmartSense Auto-tuningProximity, Liquid Tolerance SmartSense™ Auto-tuning			
1	Standard products that are configured for target applications with a gr	aphical user interface Concept Development Sampling Production	•		
3 ; 7	SmartSense Electromagnetic Compatible = SmartSense Auto-tuning	+ high noise immunity Status Status Availability QQYY QQYY			

PSoC 6 Arm Cortex-M4 MCUs for IoT

Ultra-Low-Power | Built-in Security | High-Performance

D+C

2

Concept

2

Developmen

Sampling

92

Production

Getting Started

	м	

PSoC 4 Kit Selector: www.cypress.com/psoc4kits

Getting Started With PSoC® 4700

1. Download the <u>PSoC Creator IDE</u> software

PSoC Creator IDE with Graphical Front Ends www.cypress.com/Creator

2. Purchase a PSoC 4700 kit

PSoC 4700 Inductive Sensing Evaluation Kit

3. Visit the <u>PSoC 4700 Product Page</u> and review datasheets, design guide and code examples

	10						Dete	sheet	
	Cabo		DESIGN	SLEE	K INTER	FACES	Down	nioad PSoC Creator	
			WITH PS	OC [®] 4	4700 MC	Us	Prod	uct Selector Guide	
Overvlew	Getting Started	Products	Documentation	KOts	Software				
The PSoC 4 next-gener	700 Family adds a ation solutions. Th	dvanced sen is family incl	sing technologies t udes the PSoC 470	o the 32 0 S-Serie	bit Arm Cor es that featu	tex M0/M0+ PSoC res an advanced in	4 Portfolio of p ductive sensing	roducts to enable innov g technology for highly r	ativ alial
numan ma	chine interfaces, fil	ally waterpro	of interfaces and o	icher nei	w, innovative	solutions.			
32.bit MCU	Subsystem								
 48-MH; Up to 3 	Arm® Cortex® M 28B flash and 4KB	ID+ CPU SRAM				P50C* 47005 I	Block Diagra	im	
Programm	able Analog Blocks		MCU	Subsyst	em	Pregrammable	Analog Blocks	I/O Subsystem	
One 10 Two Inv	bit, 16.8-ksps Sing	gle-Slope ADI ors (CMP)					Single Single ADC	570x8	
• Two 7-	sit IDACs configura	ble as a sing	e 8-bit	(rm		-	Per et au	Smarth	8
IDAC	seSense ^M block th	at enables se	osing of	49 MHz		OVP1/2	746.050.02		
metal c	bjects	or completes se	ranger	and a	- 1	Mags	6114 P	Sman ()	
One Ca	pSense® block the	at supports is	SWE-	AR 10 2245	• I	Capita	ATAA		
capacit	ance sensing	- and minten		SIDAM	1			0.008	
Programm	able Digital Blocks				- 1	Programmable	Analog Blocks	GRO M	
Five co	nfigurable 16-bit Ti	imer, Counte	r, FWM	WCO	- 1	10W	N/C	20	
Two Se are cor	rial Communicatio figurable as I2C, SI	n Blocks (SC PI or UART	Bs) that Srife	n Wire Del	146	\$69	in2	(PO)A	
Packages:									
 25-ball Up to 3 	WLCSP, 24-pin QFI 6 GPIOs, including	N, 48-pin TQI 16 Smart VC	FP Is						
	n Example: Washir	ng Machine		,					
Application	les:		_		PSoC [®]	4			
Application PSoC Enab		faces with m	khobs	\rightarrow	•	1			
Application PSoC Enable Sleek, f	uturistic user inter s and inductive se	nsing rotary.	and the second sec		- Andread				
Application PSoC Enab Sleek, f overlay Best-In	uturistic user inter s and inductive se class noise immur	nsing rotary no inductive-	and Door Lo	ck.	Romedan				
Application PSoC Enable Sleek, f overlay Best-In capacit Sensing	uturistic user inter s and inductive-se class noise immur ive-sensing user-in s SNR > 800:1, Caoi	nsing rotary ne inductive- terface (Indu Sense SNR >	and Door Lo active 300:1)	<u> </u>	Sensing	→			P
Application PSoC Enab Sieck, f overlay Best-In capacit Sensing Simplif	uturistic user inter s and inductive ser class noise immur ve sensing user-in g SNR > 800:1, Capi led production with	nsing rotary ne inductive- iterface (Indu Sense SNR > h AutoTuninj	and Door Lo active 300:1) O Rotay)	Sensing			ADC	D
Application PSoC Enab Sieck, f overlay Biest-in capacit Sensing Simplif algorith variatie	uturistic user inter s and inductive set class noise immur- ve sensing user-in g SNR > 800:1, Capi led production with rms to compensations	nsing rotary ne inductive sterface (Indu Sense SNR > h AutoTunin) e for manufa	and Door Lo active 300:1) 00 5" Rotan cturing Encode	2	Sensing	Arm Garaev		ADC Tem	D
Application PSoC Enab Sleek, 1 overlay Best-in capacit Sensing Simplif algorith variable Reduce sho	uturistic user inter s and inductive se class noise immur ve-sensing user-in g SNR > 800:1, Capi eled production with tims to compensate ins d system cost with	nsing rotary ne inductive- terface (Indu Sense SNR > h AutoTuninj e for manufa n a highly inti	and Door Lo active 300:1) O churing Encode ograted O)	Sensing	Arm Cernex ^a MCL		ADC Tem	D

CY8CKIT-148-COIL Inductive Sensing Breakout Board

- CY8CKIT-148-COIL Inductive Sensing Breakout Board features the following:
 - Snap-able metal targets
 - 1x Linear Metal Target
 - 2x rectangular metal targets
 - 1x Rotary Encoder target
 - Snap-able coils
 - 2x Linear Encoders
 - 1x Rotary Encoder
 - 1x 6-Segment Button Slider
 - 2x 20mm Square Coils
 - 1x 25mm Circular Coil
 - 2x 15mm Circular Coils
 - 2x 5mm Circular Coils

Getting Started with PSoC 6 MCUs

- Visit the <u>PSoC 6 Product Page</u> and review datasheets, application notes, technical reference manuals, and watch videos
- Purchase the <u>PSoC 6 BLE Pioneer Kit</u>, <u>PSoC 6 WiFi-BT Pioneer Kit</u>, or <u>PSoC 6 Wi-Fi</u> <u>BT Prototyping Kit</u>
- Join the <u>PSoC 6 Community</u> to interact with us
- PSoC 6 BLE Pioneer Kit provides:
 - Capacitive-sensing CapSense slider and buttons and 512Mb QSPI NOR flash memory
 - Compatible form factor with Arduino[®] shields and Digilent[®] Pmod[™] daughter cards
- PSoC 6 WiFi-BT Pioneer Kit provides:
 - Capacitive-sensing CapSense slider and buttons and 512Mb QSPI NOR Flash memory
 - Compatible form factor with Arduino shields and Digilent Pmod daughter cards
 - Murata LBEE5KL1DX-TEMP Module (CYW4343W) that provides IEEE 802.11a/b/g/n WLAN + Bluetooth
- PSoC 6 Wi-Fi BT Prototyping Kit provides:
 - Snappable peripherals: Capacitive-sensing CapSense slider and buttons, Digilent Pmod interface, 512Mb QSPI NOR flash, uSD card, PDM-PCM microphone, thermistor
 - Bread-board compatible form-factor
 - Murata LBEE5KL1DX-TEMP Module (CYW4343W) that provides IEEE 802.11a/b/g/n WLAN + Bluetooth

\$99 PSoC 6 WiFi-BT Pioneer Kit (CY8CKIT-062-WiFi-BT)

\$75 PSoC 6 BLE Pioneer Kit (CY8CKIT-062-BLE)

Getting Started

- 1. Download the **PSoC Creator IDE**
- 2. Purchase any of Cypress CapSense/MagSense Eval Kits:

PSoC 4700 MCU Inductive Sensing Eval Kit (CY8CKIT-148)

PSoC 4 MCU Kits w/ CapSense:

- → PSoC 4 BLE Pioneer Kit (<u>CY8CKIT-042-BLE-A</u>)
- → PSoC 4000S Prototyping Kit (<u>CY8CKIT-145-40XX</u>)
- → PSoC 4 M-Series (Intelligent Analog) Pioneer Kit (<u>CY8CKIT-044</u>)
- → CapSense Liquid Level Sensing Shield (for use w/ PSoC 4 Kits (CY8CKIT-022)
- → CapSense Proximity Shield (for use w/ PSoC 4 Kits (CY8CKIT-024)

PSoC 6 MCU Kits w/ CapSense:

- → PSoC 6 BLE Pioneer Kit (<u>CY8CKIT-062-BLE</u>)
- → PSoC 6 WiFi-BT Pioneer Kit (<u>CY8CKIT-062-WIFI-BT</u>)
- → PSoC 6 WiFi-BT Prototyping Kit (<u>CY8CPROTO-062-4343W</u>)
- 3. Join the Cypress Developer Community (CDC)
- 4. Start your design with any of the kits above and resources to the right. Interact with our engineers on the CDC if you need help!
- 27 CYPRESS CONFIDENTIAL

References and Links

Product Pages

- PSoC 4 MCU Family Page
- PSoC 6 MCU Family Page
- Cypress Sensing Technologies Page
- PSoC MCU Roadmap
- <u>PSoC MCU Development Kits Selector</u>
- Cypress Developer Community (CDC)
 - PSoC 4 Community
 - PSoC 6 Community
 - <u>Cypress Sensing Technologies Community</u>
- App Notes/Datasheets/Technical Docs
 - PSoC 6 MCU Datasheets
 - PSoC 4 MCU Datasheets
 - PSoC 4 and PSoC 6 MCU CapSense Design Guide App Note
 - Getting Started With CapSense App Note
 - PSoC 4 Low-Power CapSense Design Guide
 - PSoC 4 Capacitive Liquid Level Sensing App Note
 - Proximity Sensing With CapSense App Note
 - Inductive Sensing Design Guide
 - <u>All Cypress CapSense/MagSense Resources</u>

