首页 | 期刊简介 | 编辑部 | 广告部 | 发行部 | 在线投稿 | 联系我们 | 产品信息索取
2024年5月3日星期五
2011年第01期
 
2010年第12期
 
2010年第11期
2010年第11期
 
2010年第10期
2010年第10期
 
2010年第09期
2010年第09期
 
2010年第09期
2010年第08期
 
2010年第07期
2010年第07期
 
2010年第06期
2010年第06期
 
2010年第05期
2010年第05期
 
2010年第04期
2010年第04期
 
2010年第03期
2010年第03期
 
2010年第02期
2010年第02期
 
2010年第01期
2010年第01期
 
2009年第12期
2009年第12期
 
2009年第11期
2009年第11期
 
2009年第10期
2009年第10期
 
2009年第9期
2009年第9期
 
2009年第8期
2009年第8期
 
2009年第7期
2009年第7期
 
2009年第6期
2009年第6期
 
2009年第5期
2009年第5期
 
2009年第4期
2009年第4期
 
2009年第3期
2009年第3期
 
2009年第2期
2009年第2期
 
2009年第1期
2009年第1期
 
2008年第12期
2008年第12期
 
2008年第11期
2008年第11期
 
2008年第10期
2008年第10期
 
2008年第9期
2008年第9期
 
2008年第8期
2008年第8期
 
2008年第7期
2008年第7期
 
2008年第6期
2008年第6期
 
2008年第5期
2008年第5期
 
2008年第4期
2008年第4期
 
2008年第3期
2008年第3期
 
2008年第2期
2008年第2期
 
2008年第1期
2008年第1期
基于RF芯片nRF401的无线数传模块设计
The Design of Wireless Module Based On RF Transceiver nRF401
■解放军信息工程大学 卜佑军 李建新 邵高平

概述

 

所设计的无线数传模块由单片射频收发芯片nRF401、AT89C52微控制器和MAX3316接口芯片构成,工作在433.92/434.33MHz频段;可方便地嵌入在各种测量和控制系统中进行无线数据传输,在车辆监控、无线抄表、无线232数据通信、计算机遥控遥测系统中应用。

nRF401是北欧集成电路公司(NORDIC)的产品,是一个为433MHz ISM频段设计的真正单片UHF无线收发芯片,满足欧洲电信工业标准(ETSI)EN300 200-1 V1.2.1。它采用FSK调制解调技术,最高工作速率可以达到20K,发射功率可以调整,最大发射功率是+10dBm。nRF401的天线接口设计为差分天线,以便于使用低成本的PCB天线。它要求非常少的外围元件(约10个),无需声表滤波器、变容管等昂贵的元件,只需要便宜且易于获得的4MHz晶体,收发天线合一。无需进行初始化和配置,不需要对数据进行曼彻斯特编码,有两个工作频宽(433.92/434.33MHz),工作电压范围可以从2.7-5V,还具有待机模式,可以更省电和高效。

nRF401无线收发芯片的结构框图如图1所示:内部结构可分为发射电路、接收电路、模式和低功耗控制逻辑电路及串行接口几部分。发射电路包含有:射频功率放大器、锁相环(PLL),压控振荡器(VCO),频率合成器等电路。基准振荡器采用外接晶体振荡器,产生电路所需的基准频率。

其主要特性如下:
●工作频率为国际通用的数传频段
●FSK调制,抗干扰能力强,特别适合工业控制场合;
●采用PLL频率合成技术,频率稳定性极好;
●灵敏度高,达到-105dBm(nRF401);
●功耗小,接收状态250 A,待机状态仅为8 A(nRF401);
●最大发射功率达 +10dBm ;
●低工作电压(2.7V),可满足低功耗设备的要求;
●具有多个频道,可方便地切换工作频率 ;
●工作速率最高可达20Kbit/s(RF401);
●仅外接一个晶体和几个阻容、电感元件,基本无需调试;
●因采用了低发射功率、高接收灵敏度的设计,使用无需申请许可证,开阔地的使用距离最远可达1000米 (与具体使用环境及元件参数有关)。

 

引脚排列和功能

 

nRF401无线收发芯片具有20个引脚,图2所示是其引脚排列。

 

重要时序参数

 

TX与RX之间的切换

当从RX切换到TX模式时,数据输入脚(DIN)必须保持为高至少1ms才能收发数据。当从TX切换到RX时,数据输出脚(DOUT)要至少3ms以后有数据输出。

Standby与RX之间的切换

从待机模式到接收模式,当PWR_UP输入设成1时,经过tSR时间后,DOUT脚输出数据才有效。对 nRF401来说,tST最长的时间是3ms。
从待机模式到发射模式,所需稳定的最大时间是tST。

Power Up与TX间的切换

从加电到发射模式过程中,为了避免开机时产生干扰和辐射,在上电过程中TXEN的输入脚必须保持为低,以便于频率合成器进入稳定工作状态。当由上电进入发射模式时,TXEN必须保持1ms以后才可以往DIN发送数据。

从上电到接收模式过程中,芯片将不会接收数据,DOUT也不会有数据输出,直到电压稳定达到2.7V以上,并且至少保持5ms。如果采用外部振荡器,这个时间可以缩短到3ms。

 

应用电路及设计应注意问题

 

在实际应用中,微控制器采用Atmel公司的AT89C52,分别用单片机的P1口各管脚控制nRF401的DIN、DOUT、TXEN、PWRUP、CS这五个脚即可。具体连接可参见图3。

接口芯片采用美信公司的RS232转换芯片MAX3316,完成单片机和计算机RS232接口的电平转换及数据发送、接收、请求、清除功能。关于此芯片的使用可参见其手册。

在nRF401芯片使用时,设定好工作频率,进入正常工作状态后,通过单片机根据需要进行收发转换控制,发送/接收数据或进行状态转换。在实际的设计应用中,需要注意以下几个问题:

1)天线的接入

ANT1和ANT2是接收时LNA的输入,以及发送时功率放大器的输出。连接nRF401的天线是以差分方式连接到nRF401的。在天线端推荐的负载阻抗是400欧姆。图3是一个典型的采用差分方式的原理图。射频功率放大器输出是两个开路输出三极管,配制成差分配对方式,功率放大器的VDD必须通过集电极负载,当采用差分环形天线时,VDD必须通过环形天线的中心输入。

2)与单片机共用一个晶振

nRF401可以与单片机共用一个晶振,图4表示了这种应用的连接方式。需要注意从单片机引入的晶体走线不能离数据线或者控制线太近。

PCB布局和去耦设计 印刷电路板(PCB)的设计直接关系到射频性能,为了获得较好的RF性能,PCB设计至少需要两层板来实现,PCB分成射频电路和控制电路两部分布置。nRF401采用PCB天线,在天线的下面没有接地面。射频部分的电源与数字电路部分的电源分离。

为了减少分布参数的影响,在PCB应该避免长的电源走线,所有元件地线,VDD连接线,VDD去耦电容必须离nRF401尽可能的近。nRF401的电源必须经过很好的滤波,并且与数字电路供电分离,在离电源脚VDD尽可能近的地方用高性能的电容去耦,最好是一个小电容和一个大电容相并联。PCB板顶层和底层最好敷铜接地,把这两层的敷铜用较多的过孔紧密相连,再将VSS脚连接到敷铜面。所有开关信号和控制信号都不能经过PLL环路滤波器元件和VCO电感附近。

对nRF401的PCB布局来说,VCO电感的位置是非常重要的。nRF401VCO电感位置的最佳设计是保证产生1.1 0.2V的PLL环路滤波器电压,这个电压可以从FILT1(pin4)测得。

 

通信协议的设计

 

nRF401在很多时候用在便携及移动式设备,在这种应用中需要尽可能长时间的工作,考虑到电池的能耗,往往需要考虑节能和低功耗设计的问题。为了节能,nRF401平时大多数情况下应处于关闭状态,由于无线部分硬件上是不具备自动唤醒功能的,为了达到节能的目的,必须通过软件方式采用合理的通信协议以保证节能同时不丢失数据。

1)首先每次发送应该有一个前置码,通常可采用101010101010……,持续一个给定的周期(比如1秒),这个前置码是节能的基础。

2)接收端平时可以开启接收几个毫秒,如果没有收到规定的前置101010101010……,然后关闭约1秒,通过检测前置码而获得同步。开关的时间比也就是工作的占空比,增加前置码的周期可以减少工作的时间,从而减少平均工作电流;需要注意的是增加前置码的长度虽然可以降低功耗,但是会降低系统的响应速度,需要根据系统的要求进行确定。

 

软件设计

 

在设计程序时,要注意各状态转换的时延。nRF401的通讯速率最高为20kbit/s,发送数据之前需将电路置于发射模式;接收模式转换为发射模式的转换时间至少为1ms;可以发送任意长度的数据;发射模式转换为接收模式的转换时间至少为3ms。在待机模式时,电路进入待机状态,电路不接收和发射数据。待机模式转换为发射模式的转换时间至少为4ms;待机模式转换为接收模式的转换时间至少为5.0ms。这里给出系统和程序的工作流程图5。

         
版权所有《世界电子元器件》杂志社
地址:北京市海淀区上地东路35号颐泉汇 邮编:100085
电话:010-62985649
E-mail:dongmei@eccn.com