首页 | 新闻 | 新品 | 文库 | 方案 | 视频 | 下载 | 商城 | 开发板 | 数据中心 | 座谈新版 | 培训 | 工具 | 博客 | 论坛 | 百科 | GEC | 活动 | 主题月 | 电子展
返回列表 回复 发帖

迈入100G传输时代

迈入100G传输时代

关键字:100G   传输   WDM  
      过去的三年,由于IPTV、HDTV、VOD和移动宽带业务的快速发展,特别是基于Internet的视频应用和P2P应用的迅猛发展,使运营商的骨干网络的业务流量持续增长。

      为了应对大容量网络带宽要求,高速率的WDM传输技术成为解决问题的重点。从1995年DWDM系统首次商用以来,其容量从刚开始的8个DWDM2.5G 波道,发展到近几年来开始规模部署的80个DWDM40G波道。而更高速率的100G传输技术也正走向成熟。

      但如何才能做到100G传输技术所要求的2bit/s/Hz频谱效率,并且克服光纤对于长距离传输100G高速信号带来的挑战,选择合适的信号调制方式和高性能的接收技术是实现100G传输的技术关键。


      100G的传输技术

      调制格式决定了如何将输入的数字信息高效的承载到每个光载波之上。最早期的40G部署基于双二进制传输(PSBT),一个简单的多电平的调制方式允许 50GHz的波道间隔和滤波操作,它具有良好的成本与性能比,但只达到中等距离的传输水平(8x22dB)。自2005年以来,40G已在某些地区开始应用,特别是在美国部署长途应用。随后,相位调制技术开始被应用到40G的传输系统,和传统的幅度调制的技术相比,多相位调制方式可以更好的抵御非线性光学效应和噪声。最广泛使用的40G的调制方式包括差分接收的两相调制(DPSK)和四相调制方式(DQPSK),可以实现长距离的传输。但100G的传输速率是40G的2.5倍,是传统10G的10倍,为了在50GHz的频谱内传输信号,更高效的调制方式需要考虑。为了保持合适的传输波特率,传输100G的时候每信元符号需要携带更多的比特信息(4比特/符号),因此如果单纯考虑增加相位调制的复杂度,从四相调制发展到16QAM(4比特/符号),但由于 16QAM的最小欧氏距离很小,能容忍的相位和幅度噪声也很小,所以其非线性容忍性很差,因此无法满足长距离的传输需要,而且系统设计比较复杂。因此,对于100G的调制方式的选择,业界选择的主流技术仍然是QPSK,但为了达到4比特/符号,采用极化模复用的方式,也就是PDM-QPSK的调制方式,该调制方式已经被OIF列为标准。

      PDM-QPSK的信号在接收侧采用相干检测技术可以实现高性能的信号解调。和直接解调、差分解调方式相比,相干检测所使用的本地激光器的功率要远大于输入光信号的光功率,所以光信噪比可以极大地改善。特别是相干检测技术充分利用强大的DSP来处理极化模复用信号,可以通过后续的数字信号处理补偿并进行信号重构,可以还原被传输的信号的特性(极化模,幅度,相位),大幅度消除光纤带来的传输损伤,如PMD容忍度达30ps,无需线路色散补偿就可以容忍几万 ps/nm。

      相比于其它的100G传输方案,如Dual-Sub-Carrier-PDM-QPSK或OFDM技术,PDM-QPSK结合相干检测提供了最优化的解决方案(如图1),这被大多数的系统供应商选择为解决方案。据相关的测试和研究报告,采用PDM-QPSK调制和相干检测技术的100G传输系统,可以支持 1500km的传输距离,当采用Raman光放技术,可以达到2500km,为长距离的骨干传输做好准备。

      100G的试验网

      从2005年开始,阿尔卡特朗讯致力于100G传输商用系统的技术研究和开发,并且在进行了大量测试,为100G技术的成熟商用奠定了基础。
返回列表